Supplement of

Distributed summer air temperatures across mountain glaciers in the southeast Tibetan Plateau: temperature sensitivity and comparison with existing glacier datasets

Thomas E. Shaw et al.

Correspondence to: Thomas E. Shaw (thomas.shaw@wsl.ch)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
S1. Air temperature inter-comparison.

We tested the contemporaneous differences in hourly air temperatures recorded at AWS_On (Parlung4 Glacier) and T4, T-Logger, that are <10 m of horizontal distance apart. We deem the measurements occupy a similar measurement space to be comparable for an estimate of uncertainty in the sensors, though cannot guarantee the measurement of the same air parcel. We extract all hours of data for the two summers (12 July – 18 September) and compare the absolute differences between the naturally ventilated observations. Similarly we utilise the P90 hours (the warmest 10% of contemporaneous hours at the off-glacier AWS_Off (Table 1)) to test the differences. Figure S1 shows that the absolute hourly differences are typically below 1°C for all hour considered (mean differences = 0.46°C – red vertical line). For P90 hours, the mean absolute differences were 0.49°C, though with a distribution of differences that are slightly larger than for all hours. For P90 conditions, ~95% of the total differences are below 1°C (vertical green line in Figure S1). We employ this as a suitable estimate of uncertainty in the on-glacier temperature measurements in this study.
S2. Off-glacier lapse rates

We utilised the hourly air temperature data at AWS_Off and T-loggers T1, T2, and T1 in order to construct a fixed-intercept lapse rate where AWS_Off is the reference ‘forcing’ station (e.g. the station from which air temperature must be distributed). This is calculated where the best fit line is forced through the elevation (z)

$$y - y_0 = \beta (z - z_0) + \epsilon$$

such that z_0 and y_0 is the point through which the regression line must pass (i.e., a linear regression without an intercept) to fit the model on a translated data set, and where y is the air temperature for each time step, β is the regression slope and ϵ is the original intercept value.

We compare this with a lapse rate that is calculated using a linear regression of all the aforementioned stations (Figure S2). This figure illustrates the inappropriate use of a standard linear regression equation to derive the lapse for multiple stations. Using a fixed intercept approach resulted in shallower lapse rates on average (smaller increases in air temperature with elevation). The mean fixed intercept (standard) lapse rate was -0.0051 (0.0053) °C m⁻¹.
Figure S2: The mean off-glacier air temperatures for the whole measurement period compared to lapse rates derived following the fixed intercept and standard regression (‘All station’) approaches. AWS4600 is named AWS_Off in the main text.
Figure S3: A map of the global datasets used in this study for comparison of climatic sensitivity. The red box is used to emphasize the location of this study and the black box and inset zoom on the European Alps for clarity.
Figure S4: The calculated width/length ratio of each glacier (Bridge = ‘CMBC’, La Mare = ‘AVDM’) compared to the presence of increasing temperature sensitivity on the glacier terminus (coloured boxes). The glacier width was calculated from Google Earth imagery as an average of the lower 30% of the glacier.