Articles | Volume 15, issue 11
https://doi.org/10.5194/tc-15-5227-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5227-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Snow water equivalent measurement in the Arctic based on cosmic ray neutron attenuation
Anton Jitnikovitch
CORRESPONDING AUTHOR
Cold Regions Research Centre, Wilfrid Laurier University, 75 University Avenue, Waterloo, ON, N2L 3C5, Canada
Philip Marsh
Cold Regions Research Centre, Wilfrid Laurier University, 75 University Avenue, Waterloo, ON, N2L 3C5, Canada
Branden Walker
Cold Regions Research Centre, Wilfrid Laurier University, 75 University Avenue, Waterloo, ON, N2L 3C5, Canada
Darin Desilets
Hydroinnova LLC, 1401 Morningside Drive NE, Albuquerque, NM, 87110, USA
Related authors
No articles found.
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Julien Meloche, Benoit Montpetit, Nicolas R. Leroux, Richard Essery, Gabriel Hould Gosselin, and Philip Marsh
EGUsphere, https://doi.org/10.5194/egusphere-2025-1498, https://doi.org/10.5194/egusphere-2025-1498, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The impact of uncertainties in the simulation of snow density and SSA by the snow model Crocus (embedded within the Soil, Vegetation and Snow version 2 land surface model) on the simulation of snow backscatter (13.5 GHz) using the Snow Microwave Radiative Transfer model were quantified. The simulation of SSA was found to be a key model uncertainty. Underestimated SSA values lead to high errors in the simulation of snow backscatter, reduced by implementing a minimum SSA value (8.7 m2 kg-1).
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Richard Essery, Philip Marsh, Rosamond Tutton, Branden Walker, Matthieu Lafaysse, and David Pritchard
The Cryosphere, 18, 5685–5711, https://doi.org/10.5194/tc-18-5685-2024, https://doi.org/10.5194/tc-18-5685-2024, 2024
Short summary
Short summary
Parameterisations of Arctic snow processes were implemented into the multi-physics ensemble version of the snow model Crocus (embedded within the Soil, Vegetation, and Snow version 2 land surface model) and evaluated at an Arctic tundra site. Optimal combinations of parameterisations that improved the simulation of density and specific surface area featured modifications that raise wind speeds to increase compaction in surface layers, prevent snowdrift, and increase viscosity in basal layers.
Charles E. Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy J. Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data, 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024, https://doi.org/10.5194/essd-16-2605-2024, 2024
Short summary
Short summary
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar (SAR) surveys of over 120 000 km2 in Alaska and northwestern Canada during 2017, 2018, 2019, and 2022. This paper summarizes those results and provides links to details on ~ 80 individual flight lines. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band SAR data.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Oliver Sonnentag, Gabriel Hould Gosselin, Melody Sandells, Chris Derksen, Branden Walker, Gesa Meyer, Richard Essery, Richard Kelly, Phillip Marsh, Julia Boike, and Matteo Detto
Biogeosciences, 21, 825–841, https://doi.org/10.5194/bg-21-825-2024, https://doi.org/10.5194/bg-21-825-2024, 2024
Short summary
Short summary
We undertake a sensitivity study of three different parameters on the simulation of net ecosystem exchange (NEE) during the snow-covered non-growing season at an Arctic tundra site. Simulations are compared to eddy covariance measurements, with near-zero NEE simulated despite observed CO2 release. We then consider how to parameterise the model better in Arctic tundra environments on both sub-seasonal timescales and cumulatively throughout the snow-covered non-growing season.
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 27, 2173–2188, https://doi.org/10.5194/hess-27-2173-2023, https://doi.org/10.5194/hess-27-2173-2023, 2023
Short summary
Short summary
The Arctic is warming quickly and influencing lake water balances. We used water isotope concentrations taken from samples of 25 lakes in the Canadian Arctic and estimated the average ratio of evaporation to inflow (E / I) for each lake. The ratio of watershed area (the area that flows into the lake) to lake area (WA / LA) strongly predicted E / I, as lakes with relatively smaller watersheds received less inflow. The WA / LA could be used to predict the vulnerability of Arctic lakes to future change.
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 26, 6185–6205, https://doi.org/10.5194/hess-26-6185-2022, https://doi.org/10.5194/hess-26-6185-2022, 2022
Short summary
Short summary
We estimated how much of the water flowing into lakes during snowmelt replaced the pre-snowmelt lake water. Our data show that, as lake depth increases, the amount of water mixed into lakes decreased, because vertical mixing is reduced as lake depth increases. Our data also show that the water mixing into lakes is not solely snow-sourced but is a mixture of snowmelt and soil water. These results are relevant for lake biogeochemistry given the unique properties of snowmelt runoff.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, and Julia Boike
The Cryosphere, 16, 4201–4222, https://doi.org/10.5194/tc-16-4201-2022, https://doi.org/10.5194/tc-16-4201-2022, 2022
Short summary
Short summary
Measurements of the properties of the snow and soil were compared to simulations of the Community Land Model to see how well the model represents snow insulation. Simulations underestimated snow thermal conductivity and wintertime soil temperatures. We test two approaches to reduce the transfer of heat through the snowpack and bring simulated soil temperatures closer to measurements, with an alternative parameterisation of snow thermal conductivity being more appropriate.
Rebecca Gugerli, Darin Desilets, and Nadine Salzmann
The Cryosphere, 16, 799–806, https://doi.org/10.5194/tc-16-799-2022, https://doi.org/10.5194/tc-16-799-2022, 2022
Short summary
Short summary
Monitoring the snow water equivalent (SWE) in high mountain regions is highly important and a challenge. We explore the use of muon counts to infer SWE temporally continuously. We deployed muonic cosmic ray snow gauges (µ-CRSG) on a Swiss glacier over the winter 2020/21. Evaluated with manual SWE measurements and SWE estimates inferred from neutron counts, we conclude that the µ-CRSG is a highly promising method for remote high mountain regions with several advantages over other current methods.
Julien Meloche, Alexandre Langlois, Nick Rutter, Alain Royer, Josh King, Branden Walker, Philip Marsh, and Evan J. Wilcox
The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022, https://doi.org/10.5194/tc-16-87-2022, 2022
Short summary
Short summary
To estimate snow water equivalent from space, model predictions of the satellite measurement (brightness temperature in our case) have to be used. These models allow us to estimate snow properties from the brightness temperature by inverting the model. To improve SWE estimate, we proposed incorporating the variability of snow in these model as it has not been taken into account yet. A new parameter (coefficient of variation) is proposed because it improved simulation of brightness temperature.
Daniel Power, Miguel Angel Rico-Ramirez, Sharon Desilets, Darin Desilets, and Rafael Rosolem
Geosci. Model Dev., 14, 7287–7307, https://doi.org/10.5194/gmd-14-7287-2021, https://doi.org/10.5194/gmd-14-7287-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensors estimate root-zone soil moisture at sub-kilometre scales. There are national-scale networks of these sensors across the globe; however, methods for converting neutron signals to soil moisture values are inconsistent. This paper describes our open-source Python tool that processes raw sensor data into soil moisture estimates. The aim is to allow a user to ensure they have a harmonized data set, along with informative metadata, to facilitate both research and teaching.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Inge Grünberg, Evan J. Wilcox, Simon Zwieback, Philip Marsh, and Julia Boike
Biogeosciences, 17, 4261–4279, https://doi.org/10.5194/bg-17-4261-2020, https://doi.org/10.5194/bg-17-4261-2020, 2020
Short summary
Short summary
Based on topsoil temperature data for different vegetation types at a low Arctic tundra site, we found large small-scale variability. Winter temperatures were strongly influenced by vegetation through its effects on snow. Summer temperatures were similar below most vegetation types and not consistently related to late summer permafrost thaw depth. Given that vegetation type defines the relationship between winter and summer soil temperature and thaw depth, it controls permafrost vulnerability.
Cited articles
Ball, J.: Soil and water relationships, Noble Research Institute, available at:
https://www.noble.org/news/publications/ (last access: 15 October 2021), 2001.
Bartol, J.: Listening for cosmic rays, Based upon report number 5 of the
scientific report series of the Aurora Research Institute, Aurora College, Inuvik, NWT, Canada, 1999.
Blencowe, J., Moore, S., Young, G., Shearer, R. Hagerstrom, R., Conley W., and Potter, J.: U.S. Soil Department of Agriculture, 462, Washington, DC, USA, 1960.
Bogena, H., Herrmann, F., Jakobi, J., Brogi, C., Ilias, A., Huisman, A.,
Panagopoulos, A., and Pisinaras V.: Monitoring of snowpack dynamics with
cosmic-ray neutron probes: a comparison of four conversion methods,
Front. Water, 2, 19, https://doi.org/10.3389/frwa.2020.00019, 2020.
Bush, E. and Lemmen, D.: Canada's changing climate report, Government of
Canada, Ottawa, Ontario, 444 pp., 2019.
Chrisman, B. and Zreda, M.: Quantifying mesoscale soil moisture with the cosmic-ray rover, Hydrol. Earth Syst. Sci., 17, 5097–5108, https://doi.org/10.5194/hess-17-5097-2013, 2013.
Deems, J., Painter, T., and Finnegan, D.: Lidar measurement of snow depth: a
review, J. Glaciol., 59, 215, https://doi.org/10.3189/2013JoG12J154, 2013.
Delunel, R., Bourles, D., van der Beek, P., Schlunegger, F., Leya, I.,
Masarik, J., and Paquet, E.: Snow shielding factors for cosmogenic nuclide
dating inferred from long-term neutron detector monitoring, Quat. Geochronol., 24, 6–24, 2014.
Derksen, C. and Brown, R.: Spring snow cover extent reductions in the
2008-2012 period exceeding climate model projections, Geophys. Res. Lett.,
39, L19504, https://doi.org/10.1029/2012GL053387, 2012.
Derksen, C., Xu, X., Dunbar, S., Colliander, A., Kim, Y., Kimball, J.,
Black, A., Euskirchen, E., Langlois, A., Loranty, M., Marsh, P., Rautianen,
K., Roy, A., Royer, A., and Stephens, J.: Retrieving landscape freeze/thaw
state from Soil Moisture Active Passive (SMAP) radar and radiometer
measurements, Remote Sens. Environ., 194, 48–62, 2017.
Desilets, D.: Intensity correction factors for a cosmic ray neutron sensor,
Hydroinnova Technical Document, 21–01, 1–12,
https://doi.org/10.5281/zenodo.4569062, 2021.
Desilets, D., Zreda, M., and Ferré, A.: Nature's neutron probe: Land
surface hydrology at an elusive scale with cosmic rays, Water Resour. Res.,
46, W11505, https://doi.org/10.1029/2009WR008726, 2010.
Goodison, B., Ferguson, H., and McKay, G.: Measurement and data analysis, in
handbook of snow: principles, processes, management, and use, Pergamon press
Canada, Toronto, Canada, 191–274, ISBN 978 0 080 25374 9, 1981.
Goodsite, M., Bertelsen, R., Pertoldi-Bianchi, S., Ren, J., Watt, L., and
Johannsson, H.: The role of science diplomacy: a historical development and
international legal framework of arctic research stations under conditions
of climate change, post-cold war geopolitics and globalization/power
transition, Journal of Environmental Studies and Sciences, 6, 645–661,
2016.
Gray, D., Erickson, D., and Abbey, F.: Energy studies in an arctic
environment, Report No. 74–18, Environmental Social Committee, Northern
Pipelines Task Force on Northern Oil Development, Information Canada, Cat. No. R57-10/1974, Ottawa, 60 pp., 1974.
Gray, D., Pomeroy, J., and Granger, R.: Modelling snow transport, snowmelt
and meltwater infiltration in open, northern regions, Division of Hydrology,
University of Saskatchewan, Saskatoon, Saskatchewan, Canada, 1989.
Gugerli, R., Salzmann, N., Huss, M., and Desilets, D.: Continuous and autonomous snow water equivalent measurements by a cosmic ray sensor on an alpine glacier, The Cryosphere, 13, 3413–3434, https://doi.org/10.5194/tc-13-3413-2019, 2019.
Hori, M., Sugiura, K., Kobayashi, K., Aoki, T., Tanikawa, T., Kuchiki, K.,
Niwano, M., and Enomoto, H.: A 38-years (1978–2015) northern hemisphere
daily snow cover extent product derived using consistent objective criteria
from satellite-borne optical sensors, Remote Sens. Environ., 191, 402–418,
2017.
Howat, I. M., de la Peña, S., Desilets, D., and Womack, G.: Autonomous ice sheet surface mass balance measurements from cosmic rays, The Cryosphere, 12, 2099–2108, https://doi.org/10.5194/tc-12-2099-2018, 2018.
Kinar, N. and Pomeroy, J.: Measurement of the physical properties of the
snowpack, Rev. Geophys., 53, 481–544, https://doi.org/10.1002/2015RG000481, 2015.
Kirkham, D., Koch, I., Saloranta, T., Litt, M., Stigter, E., Møen, K.,
Thapa, A., Kjetil, M., and Immerzeel, W.: Near Real-Time Measurement of Snow
Water Equivalent in the Nepal Himalayas, Front. Earth Sci., 7, 177, https://doi.org/10.3389/feart.2019.00177, 2019.
Klein, K. L., Steigies, C., Wimmer-Schweingruber, R. F., Kudela, K., Strharsky, I., Langer, R., Usoskin, I., Ibragimov, A., Flückiger, E. O., Bütikofer, R., Eroshenko, E., Belov, A., Yanke, V., Fuller, N., Mavromichalaki, H., Papaioannou, A., Sarlanis, C., Souvatzoglou, G., Plainaki, C., Geron-Tidou, M., Papailiou, M., Mariatos, G., Chilingaryan, A., Hovsepyan, G., Reymers, A., Parisi, M., Kryakunova, O., Tsepakina, I., Nikolayevskiy, N., Dor-Man, L., Pustil’Nik, L., and García-Población, O.: The real-time neutron monitor database,
COSPAR Scientific Assembly, Bremen, Germany, https://www.nmdb.eu/nest/ (last access: 1 October 2020), 2010.
Koch, F., Henkel, P., Appel, F., Schmid, L., Bach, H., Lamn, M., Prasch, M., Schweizer, J., and Mauser, W.: Retrieval of snow water equivalent, liquid water content and snow height of dry and wet snow by combining GPS signal
attenuation and time delay, Water Resour. Res., 55, 4465–4487, https://doi.org/10.1029/2018WR024431, 2019.
Kodama, M., Nakai, K., Kawasaki, S., and Wada, M.: An application of
cosmic-ray neutron measurements to the determination of the snow-water
equivalent, J. Hydrol., 41, 85–92, 1979.
Kuwabara, T., Bieber, J.W., Clem, J., Evenson, P., and Pyle, R.: Development
of a ground level enhancement system based upon neutron monitors, Space
Weather, 4, 1542–7390, https://doi.org/10.1029/2006SW000223, 2006.
Marsh, P. and Pomeroy J. W.: Meltwater fluxes at an arctic forest-tundra
site, Hydrol. Process., 10, 1383–1400, 1996.
Marsh, P. and Woo, M.: Snowmelt, glacier melt, and high arctic streamflow
regimes, Can. J. Earth Sci., 18, 1380–1384, 1981.
Pan, X., Yang, D., Li, Y., Barr, A., Helgason, W., Hayashi, M., Marsh, P., Pomeroy, J., and Janowicz, R. J.: Bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada, The Cryosphere, 10, 2347–2360, https://doi.org/10.5194/tc-10-2347-2016, 2016.
Paquet, E. and Laval, M.: Feedback and prospects for operating the EDF
cosmic-radiation snow sensors, Houille Blanche, 2, 113–119,
https://doi.org/10.1051/lhb:200602015, 2005
Paquet, E., Laval, M., Basaleaev, M., Belov, A., Eroshenko, E., Kartyshov,
V., Struminsky, A., and Yanke, V.: An application of cosmic-ray neutron
measurements to the determination of the snow water equivalent, Proceedings
of the 30th International Cosmic Ray Conference, Mexico City, Mexico, 1, 761–764, 2008.
Peterson, N. and Brown, J.: Accuracy of snow measurements, in: Proceedings
of the 43rd Annual Meeting of the Western Snow Conference, Coronado,
California, 1–5, 1975.
Pomeroy, J. and Gray, D.: Snowcover: Accumulation, relocation and
management, NHRI Science Report No. 7, 1995.
Quinton, W. and Marsh, P.: Image analysis and water tracing methods for
examining runoff pathways, soil properties and residence times in the
continuous permafrost zone, IAHS-AISH Publication, 258, 257–264, 1999.
Quinton, W., Hayashi, M., and Chasmer, L.: Permafrost-thaw-induced
land-cover change in the Canadian subarctic: implications for water
resources, Hydrol. Proc., 25, 152–158, https://doi.org/10.1002/hyp.7894,
2010.
Rees, A., English, M., Derksen, C., Toose, P., and Silis, A.: Observations
of late winter Canadian tundra snow cover properties, Hydrol. Process., 28,
3962–3977, https://doi.org/10.1002/hyp.9931, 2014.
Royer, A., Roy, A., Jutras, S., and Langlois, A.: Review article: Performance assessment of electromagnetic wave-based field sensors for SWE monitoring, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-163, in review, 2021.
Schattan, P., Baroni, G., Oswald, S., Schöber, J., Fey, C., Kormann,
C., Huttenlau, M., and Achleitner S.: Continuous monitoring of snowpack
dynamics in alpine terrain by aboveground neutron sensing, Water Resour.
Res., 53, 3615–3634, https://doi.org/10.1002/2016WR020234, 2017.
Schattan, P., Köhli, M., Schrön, M., Baroni, G., and Oswald, S.:
Sensing area-average snow water equivalent cosmic-ray neutrons: the
influence of fractional snow cover, Water Resour. Res., 55, 10796–10812,
2019.
Schiermeier, Q.: Arctic stations need human touch, Nature, 441, 133,
https://doi.org/10.1038/441133a, 2006.
Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity, Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, 2017.
Sigouin, M. J. P. and Si, B. C.: Calibration of a non-invasive cosmic-ray probe for wide area snow water equivalent measurement, The Cryosphere, 10, 1181–1190, https://doi.org/10.5194/tc-10-1181-2016, 2016.
Stuefer, S., Kane, D. L., and Liston, G. E.: In situ snow water equivalent
observations in the US arctic, Hydrol. Res., 44, 21–34,
https://doi.org/10.2166/nh.2012.177, 2013.
Sturm, M., Liston, G. E., Benson, C. S., and Holmgren, J.: Characteristics
and Growth of a Snowdrift in Arctic Alaska, U.S.A. Arct. Antarct. Alp. Res., 33, 319, https://doi.org/10.2307/1552239, 2001.
Sturm, M., Taras, B., Liston, G., Derksen, C., Jones, T., and Lea J.:
Estimating snow water equivalent using snow depth data and climate classes,
J. Hydrometeorol., 11, 1380–1394, 2010.
Tollefson, J.: Major report prompts warnings that the Arctic is unraveling,
Nature, ISSN, 0028–0836, https://doi.org/10.1038/nature.2017.21911, 2017.
Turcan, J. and Loijens, J.: Accuracy of snow survey data and errors in snow
sampler measurements, Proc. 32nd East. Snow. Conf., 2–11, 1975.
Walker, B., Wilcox, E. J., and Marsh, P.: Accuracy assessment of late winter snow depth mapping for tundra environments using Structure-from-Motion photogrammetry, Arctic Science, 7, 588-604, https://doi.org/10.1139/as-2020-0006, 2020.
Wallbank, J., Cole, S., Moore, R., Anderson, S., and Mellor, E.: Estimating
snow water equivalent using cosmic-ray neutron sensors from the COSMOS-UK
network, Hydrol. Proc., 35, 0885–6087, https://doi.org/10.1002/hyp.14048, 2021.
Wilcox, E. J., Keim, D., de Jong, T., Walker, B., Sonnentag, O., Sniderhan,
A. E., Mann, P., and Marsh, P.: Tundra shrub expansion may amplify
permafrost thaw by advancing snowmelt timing, Arctic Science, 5, 202–217,
https://doi.org/10.1139/as-2018-0028, 2019.
Woolf, R., Sinclair, L., Brabant, R., Harvey, B., Phlips, B., Hutcheson, A.,
and Jackson, E.: Measurement of secondary cosmic-ray neutrons near the
geomagnetic North Pole, J. Environ. Radioactiv., 198, 189–199, 2019.
Wrona, E.: Evaluation of novel remote sensing techniques for soil moisture
monitoring in the Western Canadian Arctic, M. Sc., Thesis, University of
Guelph, Canada, available at: http://hdl.handle.net/10214/10050 (last access: 1 September 2021), 2016.
Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079–4099, https://doi.org/10.5194/hess-16-4079-2012, 2012.
Short summary
Conventional methods used to measure snow have many limitations which hinder our ability to document annual cycles, test predictive models, or analyze the impact of climate change. A modern snow measurement method using in situ cosmic ray neutron sensors demonstrates the capability of continuously measuring spatially variable snowpacks with considerable accuracy. These sensors can provide important data for testing models, validating remote sensing, and water resource management applications.
Conventional methods used to measure snow have many limitations which hinder our ability to...