Articles | Volume 15, issue 10
https://doi.org/10.5194/tc-15-4637-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4637-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution inventory to capture glacier disintegration in the Austrian Silvretta
Andrea Fischer
CORRESPONDING AUTHOR
Institute for Interdisciplinary Mountain Research, Austrian Academy
of Sciences, Innrain 25, 6020 Innsbruck, Austria
Gabriele Schwaizer
ENVEO GmbH, Fürstenweg 176, 6020 Innsbruck, Austria
Bernd Seiser
Institute for Interdisciplinary Mountain Research, Austrian Academy
of Sciences, Innrain 25, 6020 Innsbruck, Austria
Kay Helfricht
Institute for Interdisciplinary Mountain Research, Austrian Academy
of Sciences, Innrain 25, 6020 Innsbruck, Austria
Martin Stocker-Waldhuber
Institute for Interdisciplinary Mountain Research, Austrian Academy
of Sciences, Innrain 25, 6020 Innsbruck, Austria
Related authors
David Wachs, Azzurra Spagnesi, Pascal Bohleber, Andrea Fischer, Martin Stocker-Waldhuber, Alexander Junkermann, Carl Kindermann, Linus Langenbacher, Niclas Mandaric, Joshua Marks, Florian Meienburg, Theo Jenk, Markus Oberthaler, and Werner Aeschbach
EGUsphere, https://doi.org/10.5194/egusphere-2025-3681, https://doi.org/10.5194/egusphere-2025-3681, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study presents an age profile of the summit glacier of Weißseespitze in the Austrian Alps. The ages were obtained by combining 14C dating with the novel atom trap trace analysis for 39Ar. The data was used to constrain glacier age models. The results show that the surface ice is ~400 a old due to recent ice loss. The remaining ice continuously covers ages up to 6000 a. This work underscores the utility of 39Ar dating in glaciology, enabling precise reconstruction of age-depth relationships.
Lea Hartl, Bernd Seiser, Martin Stocker-Waldhuber, Anna Baldo, Marcela Violeta Lauria, and Andrea Fischer
Earth Syst. Sci. Data, 16, 4077–4101, https://doi.org/10.5194/essd-16-4077-2024, https://doi.org/10.5194/essd-16-4077-2024, 2024
Short summary
Short summary
Glaciers in the Alps are receding at unprecedented rates. To understand how this affects the hydrology and ecosystems of the affected regions, it is important to measure glacier mass balance and ensure that records of field surveys are kept in standardized formats and well-documented. We describe glaciological measurements of ice ablation and snow accumulation gathered at Mullwitzkees and Venedigerkees, two glaciers in the Austrian Alps, since 2007 and 2012, respectively.
Azzurra Spagnesi, Pascal Bohleber, Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Giuliano Dreossi, Martin Stocker-Waldhuber, Daniela Festi, Jacopo Gabrieli, Andrea Gambaro, Andrea Fischer, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2023-1625, https://doi.org/10.5194/egusphere-2023-1625, 2023
Preprint archived
Short summary
Short summary
We present new data from a 10 m ice core drilled in 2019 and a 8.4 m parallel ice core drilled in 2021 at the summit of Weißseespitze glacier. In a new combination of proxies, we discuss profiles of stable water isotopes, major ion chemistry as well as a full profile of microcharcoal and levoglucosan. We find that the chemical and isotopic signals are preserved, despite the ongoing surface mass loss. This is not be to expected considering what has been found at other glaciers at similar locations.
Lea Hartl, Lucia Felbauer, Gabriele Schwaizer, and Andrea Fischer
The Cryosphere, 14, 4063–4081, https://doi.org/10.5194/tc-14-4063-2020, https://doi.org/10.5194/tc-14-4063-2020, 2020
Short summary
Short summary
When glaciers become snow-free in summer, darker glacier ice is exposed. The ice surface is darker than snow and absorbs more radiation, which increases ice melt. We measured how much radiation is reflected at different wavelengths in the ablation zone of Jamtalferner, Austria. Due to impurities and water on the ice surface there are large variations in reflectance. Landsat 8 and Sentinel-2 surface reflectance products do not capture the full range of reflectance found on the glacier.
Lea Hartl, Federico Covi, Martin Stocker-Waldhuber, Anna Baldo, Davide Fugazza, Biagio Di Mauro, and Kathrin Naegeli
The Cryosphere, 19, 3329–3353, https://doi.org/10.5194/tc-19-3329-2025, https://doi.org/10.5194/tc-19-3329-2025, 2025
Short summary
Short summary
Glacier albedo determines how much solar radiation is absorbed by the glacier surface and is a key driver of glacier melt. Alpine glaciers are losing their snow and firn cover, and the underlying darker ice is becoming exposed. This means that more solar radiation is absorbed by the ice, which leads to increased melt. To quantify these processes, we explore data from a high-elevation, on-ice weather station that measures albedo and combine this information with satellite imagery.
David Wachs, Azzurra Spagnesi, Pascal Bohleber, Andrea Fischer, Martin Stocker-Waldhuber, Alexander Junkermann, Carl Kindermann, Linus Langenbacher, Niclas Mandaric, Joshua Marks, Florian Meienburg, Theo Jenk, Markus Oberthaler, and Werner Aeschbach
EGUsphere, https://doi.org/10.5194/egusphere-2025-3681, https://doi.org/10.5194/egusphere-2025-3681, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study presents an age profile of the summit glacier of Weißseespitze in the Austrian Alps. The ages were obtained by combining 14C dating with the novel atom trap trace analysis for 39Ar. The data was used to constrain glacier age models. The results show that the surface ice is ~400 a old due to recent ice loss. The remaining ice continuously covers ages up to 6000 a. This work underscores the utility of 39Ar dating in glaciology, enabling precise reconstruction of age-depth relationships.
Lea Hartl, Bernd Seiser, Martin Stocker-Waldhuber, Anna Baldo, Marcela Violeta Lauria, and Andrea Fischer
Earth Syst. Sci. Data, 16, 4077–4101, https://doi.org/10.5194/essd-16-4077-2024, https://doi.org/10.5194/essd-16-4077-2024, 2024
Short summary
Short summary
Glaciers in the Alps are receding at unprecedented rates. To understand how this affects the hydrology and ecosystems of the affected regions, it is important to measure glacier mass balance and ensure that records of field surveys are kept in standardized formats and well-documented. We describe glaciological measurements of ice ablation and snow accumulation gathered at Mullwitzkees and Venedigerkees, two glaciers in the Austrian Alps, since 2007 and 2012, respectively.
Azzurra Spagnesi, Pascal Bohleber, Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Giuliano Dreossi, Martin Stocker-Waldhuber, Daniela Festi, Jacopo Gabrieli, Andrea Gambaro, Andrea Fischer, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2023-1625, https://doi.org/10.5194/egusphere-2023-1625, 2023
Preprint archived
Short summary
Short summary
We present new data from a 10 m ice core drilled in 2019 and a 8.4 m parallel ice core drilled in 2021 at the summit of Weißseespitze glacier. In a new combination of proxies, we discuss profiles of stable water isotopes, major ion chemistry as well as a full profile of microcharcoal and levoglucosan. We find that the chemical and isotopic signals are preserved, despite the ongoing surface mass loss. This is not be to expected considering what has been found at other glaciers at similar locations.
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.
Lea Hartl, Lucia Felbauer, Gabriele Schwaizer, and Andrea Fischer
The Cryosphere, 14, 4063–4081, https://doi.org/10.5194/tc-14-4063-2020, https://doi.org/10.5194/tc-14-4063-2020, 2020
Short summary
Short summary
When glaciers become snow-free in summer, darker glacier ice is exposed. The ice surface is darker than snow and absorbs more radiation, which increases ice melt. We measured how much radiation is reflected at different wavelengths in the ablation zone of Jamtalferner, Austria. Due to impurities and water on the ice surface there are large variations in reflectance. Landsat 8 and Sentinel-2 surface reflectance products do not capture the full range of reflectance found on the glacier.
Cited articles
Abermann, J., Lambrecht, A., Fischer, A., and Kuhn, M.: Quantifying changes and trends in glacier area and volume in the Austrian Ötztal Alps (1969–1997–2006), The Cryosphere, 3, 205–215, https://doi.org/10.5194/tc-3-205-2009, 2009.
Abermann, J., Fischer, A., Lambrecht, A., and Geist, T.: On the potential of very high-resolution repeat DEMs in glacial and periglacial environments, The Cryosphere, 4, 53–65, https://doi.org/10.5194/tc-4-53-2010, 2010.
Anderson, R. S., Anderson, L. S., Armstrong, W. H., Rossi, M. W., and Crump,
S. E.: Glaciation of alpine valleys: The glacier – debris-covered glacier
– rock glacier continuum, Geomorphology, 311, 127–142,
https://doi.org/10.1016/j.geomorph.2018.03.015, 2018.
Bahr, D. B. and Radić, V.: Significant contribution to total mass from very small glaciers, The Cryosphere, 6, 763–770, https://doi.org/10.5194/tc-6-763-2012, 2012.
BEV:
Höhen-Grid plus Geoid, available at: https://www.bev.gv.at/portal/page?_pageid=713,2363167&_dad=portal&_schema=PORTAL (last access: 23 September 2021), 2011.
Bojinski, S., Verstraete, M., Peterson, T., Richter, C., Simmons, A., and
Zemp, M.: The Concept of Essential Climate Variables in Support of Climate
Research, Applications, and Policy, B. Am. Meteorol.
Soc., 95, 1431, https://doi.org/10.1175/BAMS-D-13-00047.1, 2014.
Braumann, S. M., Schaefer, J. M., Neuhuber, S. M., Reitner, J. M.,
Lüthgens, C., and Fiebig, M.: Holocene glacier change in the Silvretta
Massif (Austrian Alps) constrained by a new 10Be chronology, historical
records and modern observations, Quaternary Sci. Rev., 245, 106493,
https://doi.org/10.1016/j.quascirev.2020.106493, 2020.
Brighenti S., Tolotti M., Bruno M. C., Wharton G., Pusch M. T., and Bertoldi
W.: Ecosystem shifts in Alpine streams under glacier retreat and rock
glacier thaw: a review, Sci. Total Environ., 675, 542–559,
https://doi.org/10.1016/j.scitotenv.2019.04.221, 2019.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A.,
Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M., Nicholson, L.,
and Zemp, M.: Glossary of glacier mass balance and related terms, Paris,
UNESCO/IHP, https://doi.org/10.5167/uzh-53475, 2011.
data.tirol.gv.at: Current and historical orthoimagery of Tyrol, Open
government data, available at:
https://www.data.gv.at/katalog/dataset/land-tirol_orthofototirol, last access: 23 September 2021.
Dexter, L. R. and Birkeland K. W.: Snow, Ice, Avalanches, and Glaciers, in:
Mountain Geography: Physical and Human Dimensions, edited by: Price, M. F., Byers, A. C., Friend, D. A., Kohler T., and Price, L. W., 1st ed., University of California Press, JSTOR, 85–126,
available at: https://www.jstor.org/stable/10.1525/j.ctt46n4cj.10 (last access: 15 December 2020) 2013.
Federal Government of Tyrol: Landesweite Laserscanbefliegung 2006–2010,
available at: https://www.tirol.gv.at/fileadmin/themen/sicherheit/geoinformation/Laserscandaten/ALS_Tirol_Onlinebericht.pdf, last access: 11 December 2020.
Fischer, A.: The evolution of the Schnapfenkuchl and Larain glaciers in the
Austrian Silvretta 1954–2020, TIB AV Portal [video supplement], https://doi.org/10.5446/53743,
2021a.
Fischer, A.: The evolution of Schnapfenkuchl H glacier 1954–2020, TIB AV Portal [video supplement],
https://doi.org/10.5446/53742, 2021b.
Fischer, A.: Bieltalferner Austrian Silvretta 1950–2020, TIB AV Portal [video supplement],
https://doi.org/10.5446/43410, 2021c.
Fischer, A.: Verhupf glacier Austrian Silvretta 1950–2020, TIB AV Portal [video supplement],
https://doi.org/10.5446/53943, 2021d.
Fischer, A.: Litzner glacier Austrian Silvretta 1950–2020, TIB AV Portal [video supplement],
https://doi.org/10.5446/53923, 2021e.
Fischer, A.: Fluchthornferner Austrian Silvretta 1954–2020, TIB AV Portal [video supplement],
https://doi.org/10.5446/53882, 2021f.
Fischer, A. and Kuhn, M.: Ground-penetrating radar measurements of 64
Austrian glaciers between 1995 and 2010, Ann. Glaciol., 54,
179–188, https://doi.org/10.3189/2013AoG64A108, 2013.
Fischer, A., Seiser, B., Stocker Waldhuber, M., Mitterer, C., and Abermann, J.: Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria, The Cryosphere, 9, 753–766, https://doi.org/10.5194/tc-9-753-2015, 2015a.
Fischer, A., Seiser, B., Stocker-Waldhuber, M., Mitterer, C., and Abermann,
J.: The Austrian Glacier Inventories GI 1 (1969), GI 2 (1998), GI 3 (2006),
and GI LIA in ArcGIS (shapefile) format, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.844988 2015b.
Fischer, M., Huss, M., and Hoelzle, M.: Surface elevation and mass changes of all Swiss glaciers 1980–2010, The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015, 2015c.
Fischer, A., Patzelt, G., and Kinzl, H.: Length changes of Austrian glaciers
1969-2016. Institut für Interdisziplinäre Gebirgsforschung der
Österreichischen Akademie der Wissenschaften, Innsbruck, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.821823, 2016a.
Fischer, A., Helfricht, K., Wiesenegger, H., Hartl, L., Seiser, B., and
Stocker-Waldhuber, M.: What Future for Mountain Glaciers?
Insights and Implications from Long-Term Monitoring in the Austrian Alps, chap. 9,
in: Developments in Earth
Surface Processes, edited by: Gregory, B., Greenwood, and Shroder, J. F., Elsevier, 21, 325–382,
https://doi.org/10.1016/B978-0-444-63787-1.00009-3, 2016b.
Fischer, A., Markl, G., and Kuhn, M.: Glacier mass balances and elevation
zones of Jamtalferner, Silvretta, Austria, 1988/1989 to 2016/2017, Institut
für Interdisziplinäre Gebirgsforschung der Österreichischen
Akademie der Wissenschaften, Innsbruck, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.818772, 2016c.
Fischer, A., Stocker-Waldhuber, M., Seiser, B., Helfricht, K., and Schwaizer, G.: Glacier inventory Austrian Silvretta 2017/2018, PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA.936109, 2021.
Gärtner-Roer, I., Nussbaumer, S. U., Hüsler, F., and Zemp, M.:
Worldwide assessment of national glacier monitoring and future perspectives,
Mt. Res. Dev., 39, A1–A11,
https://doi.org/10.1659/MRD-JOURNAL-D-19-00021.1, 2019.
Geist, T. and Stötter, H.: First results of airborne laser scanning
technology as a tool for the quantification of glacier mass balance.
Proceedings, EARSeL workshop on observing our cryosphere from
space:techniques and methods for monitoring snow and ice with regard to
climate change, 11–13 März 2002, Bern, 2002.
geoland.at: The free geodata portal of Austria, available at: http://www.geoland.at, last acess: 23 September 2021.
Haeberli, W., Hoelzle, M., Paul, F., and Zemp, M.: Integrated monitoring of
mountain glaciers as key indicators of global climate change: The European
Alps, Ann. Glaciol., 46, 150–160,
https://doi.org/10.3189/172756407782871512, 2007.
Höfle, B. and Rutzinger, M.: Topographic airborne LiDAR in
geomorphology: A technological perspective, Z.
Geomorphol., 55, 1–29,
https://doi.org/10.1127/0372-8854/2011/0055S2-0043, 2011.
Huss, M. and Fischer, M.: Sensitivity of very small glaciers in the Swiss
Alps to future climate change, Front. Earth Sci., 4, 34,
https://doi.org/10.3389/feart.2016.00034, 2016.
Huss, M., Zemp, M., Joerg, P. C., and Salzmann, N.: High uncertainty in 21st
century runoff projections from glacierized basins, J. Hydrol.,
510, 35–48, 2014.
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by:
Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M.,
Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A.,
Petzold, J., Rama, B., and Weyer, N. M., available at: https://www.ipcc.ch/site/assets/uploads/sites/3/2019/12/SROCC_FullReport_FINAL.pdf (last access: 23 September 2021), 2019.
Janke, J. R., Bellisario, A. C., and Ferrando, F. A.: Classification of
debris-covered glaciers and rock glaciers in the Andes of central Chile,
Geomorphology, 241, 98–121,
https://doi.org/10.1016/j.geomorph.2015.03.034, 2015.
Kargel, J. S., Leonard, G. J., Bishop, M. P., Kaab, A., and Raup, B. (Eds).:
Global Land Ice Measurements from Space, Springer, Berlin, Heidelberg, 876 pp., https://doi.org/10.1007/978-3-540-79818-7, 2014.
Kellerer-Pirklbauer, A. and Kaufmann, V.: Deglaciation and its impact on
permafrost and rock glacier evolution: New insight from two adjacent cirques
in Austria, Sci. Total Environ., 621, 1397–1414,
https://doi.org/10.1016/j.scitotenv.2017.10.087, 2018.
Krainer, K. and Ribis, M.: A rock glacier inventory of the Tyrolean Alps
(Austria), Austrian J. Earth Sc., 105, 32–47, 2012.
Krainer, K., Bressan, D., Dietre, B., Haas, J. N., Hajdas, I., Lang, K.,
Mair, V., Nickus, U., Reidl, D., Thies, H., and Tonidandel, D.: A
10,300-year-old permafrost core from the active rock glacier Lazaun,
southern Ötztal Alps (South Tyrol, northern Italy), Quaternary Res.,
83, 324-335, https://doi.org/10.1016/j.yqres.2014.12.005, 2015.
Landesvermessungsamt Feldkirch: Technischer Bericht zur Evaluierung der
Laserscanning-Höhenmodelle Unterland & Vorderwald der Firma Topscan
GesmbH (insgesamt 545 km2), Aktenzahl: LVA –
603.02.4.04.09.07, provided by the Federal Government of Vorarlberg, 2004.
Leigh, J., Stokes, C., Carr, R., Evans, I., Andreassen, L., and Evans, D.:
Identifying and mapping very small (< 0.5 km2) mountain glaciers on
coarse to high-resolution imagery, J. Glaciol., 65, 873–888,
https://doi.org/10.1017/jog.2019.50, 2019.
Marzeion, B., Jarosch, A. H., and Hofer, M.: Past and future sea-level change from the surface mass balance of glaciers, The Cryosphere, 6, 1295–1322, https://doi.org/10.5194/tc-6-1295-2012, 2012.
Meier, W. J.-H., Grießinger, J., Hochreuther, P., and Braun, M. H.: An
Updated Multi-Temporal Glacier Inventory for the Patagonian Andes With
Changes Between the Little Ice Age and 2016, Front. Earth Sci., 6, 62,
https://doi.org/10.3389/feart.2018.00062, 2018.
Nagai, H., Fujita, K., Sakai, A., Nuimura, T., and Tadono, T.: Comparison of multiple glacier inventories with a new inventory derived from high-resolution ALOS imagery in the Bhutan Himalaya, The Cryosphere, 10, 65–85, https://doi.org/10.5194/tc-10-65-2016, 2016.
Paul, F., Barry, R. G., Cogley, J. G., Frey, H., Haeberli, W., Ohmura, A.,
Ommanney, C. S. L., Raup, B., Rivera, A., and Zemp, M.: Recommendations for
the compilation of glacier inventory data from digital sources, Ann.
Glaciol., 50, 119–126, 2009.
Paul, F., Rastner, P., Azzoni, R. S., Diolaiuti, G., Fugazza, D., Le Bris, R., Nemec, J., Rabatel, A., Ramusovic, M., Schwaizer, G., and Smiraglia, C.: Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2, Earth Syst. Sci. Data, 12, 1805–1821, https://doi.org/10.5194/essd-12-1805-2020, 2020.
Pellikka, P. (Ed.) and Rees, W. G. (Ed.): Remote Sensing of Glaciers:
Techniques for topographic, spatial and thematic mapping of glaciers,
Leiden: CRC Press, Taylor & Francis Group, A Balkema Book. 340 pp., 2009.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G.,.
Gardner, A. S, Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E.
S., Moholdt, G., Mölg, N., Paul, F., Radic, V., Rastner, P, Raup, B. H.,
Rich, J., Sharp, M. J., and the Randolph Consortium: The Randolph Glacier
Inventory: a globally complete inventory of glaciers, J. Glaciol.,
60, 537–552, 2014.
Racoviteanu, A., Paul, F., Raup, B., Khalsa, S., and Armstrong, R.:
Challenges and recommendations in mapping of glacier parameters from space:
Results of the 2008 Global Land Ice Measurements from Space (GLIMS)
workshop, Boulder, Colorado, USA, Ann. Glaciol., 50, 53–69,
https://doi.org/10.3189/172756410790595804, 2009.
Raup, B. and Khalsa, S. J. S.: GLIMS Analysis Tutorial. GLIMS, Global Land Ice
Measurements from Space, NSIDC, available at: https://www.glims.org/MapsAndDocs/assets/GLIMS_Analysis_Tutorial_a4.pdf (last access: 23 September 2021), 2010.
Rieger, W.: ALS Tirol 2017–18, Abschlussbericht AZ Vlg-450/10 GZ/AVT: 31757,
ARGE AVT-Milan, 48 pp., 2019.
Sailer, R., Rutzinger, M., Rieg, L., and Wichmann, V.: Digital elevation
models derived from airborne laser scanning point clouds: appropriate
spatial resolutions for multi-temporal characterization and quantification
of geomorphological processes, Earth Surf. Proc. Land., 39, 272–284,
https://doi.org/10.1002/esp.3490, 2014.
Stocker-Waldhuber, M., Fischer, A., Keller, L., Morche, D., and Kuhn, M.:
Funnel-shaped surface depressions – Indicator or accelerant of rapid glacier
disintegration? A case study in the Tyrolean Alps, Geomorphology, 287,
58–72, https://doi.org/10.1016/j.geomorph.2016.11.006, 2017.
Stocker-Waldhuber, M., Fischer, A., Helfricht, K., and Kuhn, M.: Long-term records of glacier surface velocities in the Ötztal Alps (Austria), Earth Syst. Sci. Data, 11, 705–715, https://doi.org/10.5194/essd-11-705-2019, 2019.
Sommer, C., Malz, P., Seehaus, T. C., Lippl, S., Zemp, M., and Braun, M.: Rapid glacier retreat and
downwasting throughout the European Alps in the early 21st century, Nat.
Commun., 11, 3209, https://doi.org/10.1038/s41467-020-16818-0, 2020.
Tielidze, L. G., Bolch, T., Wheate, R. D., Kutuzov, S. S., Lavrentiev, I. I., and Zemp, M.: Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014, The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, 2020.
Tolotti, M., Cerasino, L., Donati, C., Pindo, M., Rogora, M., Seppi, R., and
Albanese, D.: Alpine headwaters emerging from glaciers and rock glaciers host
different bacterial communities: Ecological implications for the future,
Sci. Total Environ., 717, 137101,
https://doi.org/10.1016/j.scitotenv.2020.137101, 2020.
Tyndall, J.: Origin of glaciers, in: The Glaciers of the Alps: Being a
Narrative of Excursions and Ascents, an Account of the Origin and Phenomena
of Glaciers and an Exposition of the Physical Principles to Which They Are
Related, Cambridge Library Collection – Earth Science, 248–249,
Cambridge, Cambridge University Press, https://doi.org/10.1017/CBO9781139097048.034,
1860.
von Klebelsberg, R.: Handbuch der Gletscherkunde und Glazialgeologie, 1. Band, Allgemeiner Teil, Springer, Wien, 403 pp., 1948.
Wagenbach, D., Bohleber, P., and Preunkert, S.: Cold, alpine ice bodies
revisited: what may we learn from their impurity and isotope content?,
Geogr. Ann. A, 94, 245–263,
https://doi.org/10.1111/j.1468-0459.2012.00461.x, 2012.
Walcher, J.: Nachrichten von den Eisbergen im Tyrol, Frankfurt und Leipzig,
available at: http://mdz-nbn-resolving.de/urn:nbn:de:bvb:12-bsb10011721-1 (last access: 23 September 2021),
1773.
WGMS, and NSIDC (comps.): World Glacier Inventory, Version 1, Boulder,
Colorado USA, NSIDC: National Snow and Ice Data Center [data set],
https://doi.org/10.7265/N5/NSIDC-WGI-2012-02, 1999 (updated 2012).
Würländer, R: Airborne Laserscanner Daten 2017, Abschlussbericht,
Provided by the Federal Government of Vorarlberg, 2019.
Zekollari, H., Huss, M., and Farinotti, D.: Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble, The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, 2019.
Zekollari, H., Huss, M., and Farinotti, D.: On the imbalance and response
time of glaciers in the European Alps, Geophys. Res. Lett., 47,
e2019GL085578, https://doi.org/10.1029/2019GL085578, 2020.
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M.,
Paul, F., Haeberli, W., Denzinger, F., Ahlstroem, A. P., Anderson, B.,
Bajracharya, S., Baroni, C., Braun, L. N., Caceres, B. E., Casassa, G., Cobos,
G., Davila, L. R., Delgado Granados, H., Demuth, M. N., Espizua, L., Fischer,
A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O., Holmlund, P., Karimi,
N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V., Portocarrero, C. A., Prinz,
R., Sangewar, C. V., Severskiy, I., Sigurdsson, O., Soruco, A., Usubaliev,
R., and Vincent, C.: Historically unprecedented global glacier decline in
the early 21st century, J. Glaciol., 61, 745–762,
https://doi.org/10.3189/2015JoG15J017, 2015.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M. , Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier mass changes and
their contributions to sea-level rise from 1961 to 2016, Nature, 568,
382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019a.
Zemp, M., Sajood, A. A., Pitte, P., van Ommen, T., Fischer, A., Soruco, A.,
Thomson, L., Schaefer, M., Li, Z., Ceballos Lievano, J. L., Cáceres
Correa, B. E., Vincent, C., Tielidze, L., Braun, L.N., Ahlstrøm, A. P.,
Hannesdóttir, H., Dobhal, D. P., Karimi, N., Baroni, C., Fujita, K.,
Severskiy, I., Prinz, R., Usubaliev, R., Delgado-Granados, H., Demberel, O.,
Joshi, S. P., Anderson, B., Hagen, J. O., Dávila Roller, L. R., Gadek, B.,
Popovnin, V. V., Cobos, G., Holmlund, P., Huss, M., Kayumov, A., Lea, J. M.,
Pelto, M., and Yakovlev, A.: Glacier monitoring to track warming, Nature,
576, p. 39. https://doi.org/10.1038/d41586-019-03700-3, 2019b.
Zemp, M., Thibert, E., Huss, M., Stumm, D., Rolstad Denby, C., Nuth, C., Nussbaumer, S. U., Moholdt, G., Mercer, A., Mayer, C., Joerg, P. C., Jansson, P., Hynek, B., Fischer, A., Escher-Vetter, H., Elvehøy, H., and Andreassen, L. M.: Reanalysing glacier mass balance measurement series, The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, 2013.
Short summary
Eastern Alpine glaciers have been receding since the Little Ice Age maximum, but until now the majority of glacier margins could be delineated unambiguously. Today the outlines of totally debris-covered glacier ice are fuzzy and raise the discussion if these features are still glaciers. We investigated the fate of glacier remnants with high-resolution elevation models, analyzing also thickness changes in buried ice. In the past 13 years, the 46 glaciers of Silvretta lost one-third of their area.
Eastern Alpine glaciers have been receding since the Little Ice Age maximum, but until now the...