Articles | Volume 15, issue 7
https://doi.org/10.5194/tc-15-3329-2021
https://doi.org/10.5194/tc-15-3329-2021
Research article
 | 
20 Jul 2021
Research article |  | 20 Jul 2021

Holocene thinning of Darwin and Hatherton glaciers, Antarctica, and implications for grounding-line retreat in the Ross Sea

Trevor R. Hillebrand, John O. Stone, Michelle Koutnik, Courtney King, Howard Conway, Brenda Hall, Keir Nichols, Brent Goehring, and Mette K. Gillespie

Related authors

The contribution of Humboldt Glacier, northern Greenland, to sea-level rise through 2100 constrained by recent observations of speedup and retreat
Trevor R. Hillebrand, Matthew J. Hoffman, Mauro Perego, Stephen F. Price, and Ian M. Howat
The Cryosphere, 16, 4679–4700, https://doi.org/10.5194/tc-16-4679-2022,https://doi.org/10.5194/tc-16-4679-2022, 2022
Short summary

Related subject area

Discipline: Glaciers | Subject: Paleo-Glaciology (including Former Ice Reconstructions)
Late Holocene glacier and climate fluctuations in the Mackenzie and Selwyn mountain ranges, northwestern Canada
Adam C. Hawkins, Brian Menounos, Brent M. Goehring, Gerald Osborn, Ben M. Pelto, Christopher M. Darvill, and Joerg M. Schaefer
The Cryosphere, 17, 4381–4397, https://doi.org/10.5194/tc-17-4381-2023,https://doi.org/10.5194/tc-17-4381-2023, 2023
Short summary
Timing and climatic-driven mechanisms of glacier advances in Bhutanese Himalaya during the Little Ice Age
Weilin Yang, Yingkui Li, Gengnian Liu, and Wenchao Chu
The Cryosphere, 16, 3739–3752, https://doi.org/10.5194/tc-16-3739-2022,https://doi.org/10.5194/tc-16-3739-2022, 2022
Short summary
The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021,https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Understanding drivers of glacier-length variability over the last millennium
Alan Huston, Nicholas Siler, Gerard H. Roe, Erin Pettit, and Nathan J. Steiger
The Cryosphere, 15, 1645–1662, https://doi.org/10.5194/tc-15-1645-2021,https://doi.org/10.5194/tc-15-1645-2021, 2021
Short summary
Central Himalayan tree-ring isotopes reveal increasing regional heterogeneity and enhancement in ice mass loss since the 1960s
Nilendu Singh, Mayank Shekhar, Jayendra Singh, Anil K. Gupta, Achim Bräuning, Christoph Mayr, and Mohit Singhal
The Cryosphere, 15, 95–112, https://doi.org/10.5194/tc-15-95-2021,https://doi.org/10.5194/tc-15-95-2021, 2021
Short summary

Cited articles

Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis, The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-633-2020, 2020. 
An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A., Kanao, M., Li, Y., Maggi, A., and Lévêque, J.-J.: Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities, J. Geophys. Res.-Sol. Ea., 120, 8720–8742, https://doi.org/10.1002/2015JB011917, 2015. 
Anderson, B. M., Hindmarsh, R. C. A., and Lawson, W. J.: A modelling study of the response of Hatherton Glacier to Ross Ice Sheet grounding line retreat, Global Planet. Change, 42, 143–153, https://doi.org/10.1016/j.gloplacha.2003.11.006, 2004. 
Anderson, J. B., Conway, H., Bart, P. J., Witus, A. E., Greenwood, S. L., McKay, R. M., Hall, B. L., Ackert, R. P., Licht, K., Jakobsson, M., and Stone, J. O.: Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM, Quaternary Sci. Rev., 100, 31–54, https://doi.org/10.1016/j.quascirev.2013.08.020, 2014. 
Anderson, J. T. H., Wilson, G. S., Fink, D., Lilly, K., Levy, R. H., and Townsend, D.: Reconciling marine and terrestrial evidence for post LGM ice sheet retreat in southern McMurdo Sound, Antarctica, Quaternary Sci. Rev., 157, 1–13, https://doi.org/10.1016/j.quascirev.2016.12.007, 2017. 
Download
Short summary
We present chronologies from Darwin and Hatherton glaciers to better constrain ice sheet retreat during the last deglaciation in the Ross Sector of Antarctica. We use a glacier flowband model and an ensemble of 3D ice sheet model simulations to show that (i) the whole glacier system likely thinned steadily from about 9–3 ka, and (ii) the grounding line likely reached the Darwin–Hatherton Glacier System at about 3 ka, which is ≥3.8 kyr later than was suggested by previous reconstructions.