Articles | Volume 15, issue 6
The Cryosphere, 15, 2541–2568, 2021
The Cryosphere, 15, 2541–2568, 2021
Research article
04 Jun 2021
Research article | 04 Jun 2021

A method for solving heat transfer with phase change in ice or soil that allows for large time steps while guaranteeing energy conservation

Niccolò Tubini et al.

Related authors

HESS Opinions: Participatory Digital Earth Twin Hydrology systems (DARTHs) for everyone: a blueprint for hydrologists
Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari
Hydrol. Earth Syst. Sci. Discuss.,,, 2022
Revised manuscript under review for HESS
Short summary
Implementing the Water, HEat and Transport model in GEOframe (WHETGEO-1D v.1.0): algorithms, informatics, design patterns, open science features, and 1D deployment
Niccolò Tubini and Riccardo Rigon
Geosci. Model Dev., 15, 75–104,,, 2022
Short summary

Related subject area

Discipline: Frozen ground | Subject: Numerical Modelling
Strong increase in thawing of subsea permafrost in the 22nd century caused by anthropogenic climate change
Stiig Wilkenskjeld, Frederieke Miesner, Paul P. Overduin, Matteo Puglini, and Victor Brovkin
The Cryosphere, 16, 1057–1069,,, 2022
Short summary
Lateral thermokarst patterns in permafrost peat plateaus in northern Norway
Léo C. P. Martin, Jan Nitzbon, Johanna Scheer, Kjetil S. Aas, Trond Eiken, Moritz Langer, Simon Filhol, Bernd Etzelmüller, and Sebastian Westermann
The Cryosphere, 15, 3423–3442,,, 2021
Short summary
Effects of multi-scale heterogeneity on the simulated evolution of ice-rich permafrost lowlands under a warming climate
Jan Nitzbon, Moritz Langer, Léo C. P. Martin, Sebastian Westermann, Thomas Schneider von Deimling, and Julia Boike
The Cryosphere, 15, 1399–1422,,, 2021
Short summary
Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change
Eleanor J. Burke, Yu Zhang, and Gerhard Krinner
The Cryosphere, 14, 3155–3174,,, 2020
Short summary
Pathways of ice-wedge degradation in polygonal tundra under different hydrological conditions
Jan Nitzbon, Moritz Langer, Sebastian Westermann, Léo Martin, Kjetil Schanke Aas, and Julia Boike
The Cryosphere, 13, 1089–1123,,, 2019
Short summary

Cited articles

Anderson, D. M. and Tice, A. R.: Predicting unfrozen water contents in frozen soils from surface area measurements, Highway research record, 393, 12–18, 1972. a
Andreas, E. L.: Handbook of physical constants and functions for use in atmospheric boundary layer studies, Cold Regions Research and Engineering Laboratory, US Army Engineer Research and Development Center, 2005. a
Aschwanden, A. and Blatter, H.: Meltwater production due to strain heating in Storglaciären, Sweden, J. Geophys. Res.-Earth Surf., 110, F04024,, 2005. a
Aschwanden, A. and Blatter, H.: Mathematical modeling and numerical simulation of polythermal glaciers, J. Geophys. Res., 114, F01027,, 2009. a, b, c, d, e, f
Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An enthalpy formulation for glaciers and ice sheets, J. Glaciol., 58, 441–457, 2012. a, b
Short summary
We present a new method to compute temperature changes with melting and freezing – a fundamental challenge in cryosphere research – extremely efficiently and with guaranteed correctness of the energy balance for any time step size. This is a key feature since the integration time step can then be chosen according to the timescale of the processes to be studied, from seconds to days.