Research article 13 Apr 2021
Research article | 13 Apr 2021
Pervasive diffusion of climate signals recorded in ice-vein ionic impurities
Felix S. L. Ng
Related authors
Stephen J. Livingstone, Emma L. M. Lewington, Chris D. Clark, Robert D. Storrar, Andrew J. Sole, Isabelle McMartin, Nico Dewald, and Felix Ng
The Cryosphere, 14, 1989–2004, https://doi.org/10.5194/tc-14-1989-2020, https://doi.org/10.5194/tc-14-1989-2020, 2020
Short summary
Short summary
We map series of aligned mounds (esker beads) across central Nunavut, Canada. Mounds are interpreted to have formed roughly annually as sediment carried by subglacial rivers is deposited at the ice margin. Chains of mounds are formed as the ice retreats. This high-resolution (annual) record allows us to constrain the pace of ice retreat, sediment fluxes, and the style of drainage through time. In particular, we suggest that eskers in general record a composite signature of ice-marginal drainage.
Adam J. Hepburn, Tom Holt, Bryn Hubbard, and Felix Ng
Geosci. Instrum. Method. Data Syst., 8, 293–313, https://doi.org/10.5194/gi-8-293-2019, https://doi.org/10.5194/gi-8-293-2019, 2019
Short summary
Short summary
Currently, there exist thousands of unprocessed stereo pairs of satellite imagery which can be used to create models of the surface of Mars. This paper sets out a new open–source and free to use pipeline for creating these models. Our pipeline produces models of comparable quality to the limited number released to date but remains free to use and easily implemented by researchers, who may not necessarily have prior experience of DEM creation.
A. E. Jowett, E. Hanna, F. Ng, P. Huybrechts, and I. Janssens
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-5327-2015, https://doi.org/10.5194/tcd-9-5327-2015, 2015
Revised manuscript has not been submitted
Stephen J. Livingstone, Emma L. M. Lewington, Chris D. Clark, Robert D. Storrar, Andrew J. Sole, Isabelle McMartin, Nico Dewald, and Felix Ng
The Cryosphere, 14, 1989–2004, https://doi.org/10.5194/tc-14-1989-2020, https://doi.org/10.5194/tc-14-1989-2020, 2020
Short summary
Short summary
We map series of aligned mounds (esker beads) across central Nunavut, Canada. Mounds are interpreted to have formed roughly annually as sediment carried by subglacial rivers is deposited at the ice margin. Chains of mounds are formed as the ice retreats. This high-resolution (annual) record allows us to constrain the pace of ice retreat, sediment fluxes, and the style of drainage through time. In particular, we suggest that eskers in general record a composite signature of ice-marginal drainage.
Adam J. Hepburn, Tom Holt, Bryn Hubbard, and Felix Ng
Geosci. Instrum. Method. Data Syst., 8, 293–313, https://doi.org/10.5194/gi-8-293-2019, https://doi.org/10.5194/gi-8-293-2019, 2019
Short summary
Short summary
Currently, there exist thousands of unprocessed stereo pairs of satellite imagery which can be used to create models of the surface of Mars. This paper sets out a new open–source and free to use pipeline for creating these models. Our pipeline produces models of comparable quality to the limited number released to date but remains free to use and easily implemented by researchers, who may not necessarily have prior experience of DEM creation.
A. E. Jowett, E. Hanna, F. Ng, P. Huybrechts, and I. Janssens
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-5327-2015, https://doi.org/10.5194/tcd-9-5327-2015, 2015
Revised manuscript has not been submitted
Related subject area
Discipline: Ice sheets | Subject: Ice Cores
Brief Communication: New radar constraints support presence of ice older than 1.5 Ma at Little Dome C
Multi-tracer study of gas trapping in an East Antarctic ice core
Very old firn air linked to strong density layering at Styx Glacier, coastal Victoria Land, East Antarctica
Glaciological characteristics in the Dome Fuji region and new assessment for “Oldest Ice”
David A. Lilien, Daniel Steinhage, Drew Taylor, Frédéric Parrenin, Catherine Ritz, Robert Mulvaney, Carlos Martín, Jie-Bang Yan, Charles O'Neill, Massimo Frezzotti, Heinrich Miller, Prasad Gogineni, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-345, https://doi.org/10.5194/tc-2020-345, 2020
Revised manuscript accepted for TC
Short summary
Short summary
We collected radar data between EDC, an ice core spanning ~800 thousand years, and BELDC, the site chosen for a new
oldest icecore at nearby Little Dome C. These data allow us to identify 50 % older internal horizons than previously traced in the area. We fit a model to the ages of those horizons at BELDC to determine the age of deep ice there. We find that there is likely to be 1.5 million year old ice ~240 m above the bed, with sufficient resolution to preserve desired climatic information.
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Christoph F. Schaller, Rebecca J. Tuckwell, Henning Löwe, Laurent Arnaud, Olivier Magand, Elizabeth R. Thomas, Johannes Freitag, Robert Mulvaney, Martin Schneebeli, and Vladimir Ya. Lipenkov
The Cryosphere, 13, 3383–3403, https://doi.org/10.5194/tc-13-3383-2019, https://doi.org/10.5194/tc-13-3383-2019, 2019
Short summary
Short summary
Understanding gas trapping in polar ice is essential to study the relationship between greenhouse gases and past climates. New data of bubble closure, used in a simple gas-trapping model, show inconsistency with the final air content in ice. This suggests gas trapping is not fully understood. We also use a combination of high-resolution measurements to investigate the effect of polar snow stratification on gas trapping and find that all strata have similar pores, but that some close in advance.
Youngjoon Jang, Sang Bum Hong, Christo Buizert, Hun-Gyu Lee, Sang-Young Han, Ji-Woong Yang, Yoshinori Iizuka, Akira Hori, Yeongcheol Han, Seong Joon Jun, Pieter Tans, Taejin Choi, Seong-Joong Kim, Soon Do Hur, and Jinho Ahn
The Cryosphere, 13, 2407–2419, https://doi.org/10.5194/tc-13-2407-2019, https://doi.org/10.5194/tc-13-2407-2019, 2019
Short summary
Short summary
We can learn how human activity altered atmospheric air from the interstitial air in the porous snow layer (firn) on top of glaciers. However, old firn air (> 55 years) was observed only at sites where surface temperatures and snow accumulation rates are very low, such as the South Pole. In this study, we report an unusually old firn air with CO2 age of 93 years from Styx Glacier, near the Ross Sea coast in Antarctica. We hypothesize that the large snow density variations increase firn air ages.
Nanna B. Karlsson, Tobias Binder, Graeme Eagles, Veit Helm, Frank Pattyn, Brice Van Liefferinge, and Olaf Eisen
The Cryosphere, 12, 2413–2424, https://doi.org/10.5194/tc-12-2413-2018, https://doi.org/10.5194/tc-12-2413-2018, 2018
Short summary
Short summary
In this study, we investigate the probability that the Dome Fuji region in East Antarctica contains ice more than 1.5 Ma old. The retrieval of a continuous ice-core record extending beyond 1 Ma is imperative to understand why the frequency of ice ages changed from 40 to 100 ka approximately 1 Ma ago.
We use a new radar dataset to improve the ice thickness maps, and apply a thermokinematic model to predict basal temperature and age of the ice. Our results indicate several areas of interest.
Cited articles
Alley, R. B., Perepezko, J. H., and Bentley, C. R.: Grain growth in polar
ice: I. Theory, J. Glaciol., 32, 415–424, 1986a.
Alley, R. B., Perepezko, J. H., and Bentley, C. R.: Grain growth in polar
ice: II. Application, J. Glaciol., 32, 425–433, 1986b.
Alley, R. B. and Woods, G. A.: Impurity influence on normal grain growth in
the GISP2 ice core, Greenland, J. Glaciol., 42, 255–260, 1996.
Barletta, R. E., Priscu, J. C., Mader, H. M., Jones, W. L., and Roe, C. W.:
Chemical analysis of ice vein microenvironments: II. Analysis of glacial
samples from Greenland and the Antarctic, J. Glaciol., 58, 1109–1118,
https://doi.org/10.3189/2012JoG12J112, 2012.
Barnes, P. R. F. and Wolff, E. W.: Distribution of soluble impurities in
cold glacial ice, J. Glaciol., 170, 311–324, 2004.
Barnes, P. R. F., Mader, H. M., Röthlisberger, R., Udisti, R., and
Wolff, E. W.: The evolution of chemical peak shapes in the Dome C ice core,
Antarctica, J. Geophys. Res., 108, 4126, https://doi.org/10.1029/2002JD002538, 2003.
Bigler, M., Svensson, A., Kettner, E., Vallelonga, P., Nielsen, M. E., and
Steffensen, J. P.: Optimization of high-resolution continuous flow analysis
for transient climate signals in ice cores, Environ. Sci. Technol., 45,
4483–4489, https://doi.org/10.1021/es200118j, 2011.
Chapman, S. and Cowling, T. G.: The Mathematical Theory of Non-Uniform
Gases, Cambridge University Press, London, 1953.
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, 4th
edn., Butterworth-Heinemann, Oxford, 2010.
Dani, K. G., Mader, H. M., Wolff, E. W., and Wadham, J. L.: Modelling the
liquid-water vein system within polar ice sheets as a potential microbial
habitat, Earth Planet. Sc. Lett., 333–334, 238–249,
https://doi.org/10.1016/j.epsl.2012.04.009, 2012.
Durand, G. and Weiss, J.: EPICA Dome C Ice Cores Grain Radius Data, IGBP
PAGES/World Data Center for Paleoclimatology, Data Contribution Series No.
2004-039, NOAA/NGDC Paleoclimatology Program, Boulder CO, USA, 2004.
Duval, P.: Grain growth and mechanical behaviour of polar ice, Ann.
Glaciol., 6, 79–82, 1985.
Duval, P. and Castelnau, O.: Dynamic recrystallization of ice in polar ice
sheets, J. Phys. IV [Paris], 5, 197–205, https://doi.org/10.1051/jp4:1995317, 1995.
Eichler, J., Weikusat, C., Wegner, A., Twarloh, B., Behrens, M., Fischer,
H., Hörhold, M., Jansen, D., Kipfstuhl, S., Ruth, U., Wilhelms, F., and
Weikusat, I.: Impurity Analysis and microstructure along the climatic
transition from MIS 6 into 5e in the EDML ice core using cryo-Raman
microscopy, Front. Earth Sci., 7, 20, https://doi.org/10.3389/feart.2019.00020, 2019.
EPICA community members: Eight glacial cycles from an Antarctic ice core,
Nature, 429, 623–628, https://doi.org/10.1038/nature02599, 2004.
Faria, S. H., Weikusat, I., and Azuma, N.: The microstructure of polar ice.
Part II: state of the art, J. Struct. Geol., 61, 21–49,
https://doi.org/10.1016/j.jsg.2013.11.003, 2014.
Fujita, S., Parrenin, F., Severi, M., Motoyama, H., and Wolff, E. W.: Volcanic synchronization of Dome Fuji and Dome C Antarctic deep ice cores over the past 216 kyr, Clim. Past, 11, 1395–1416, https://doi.org/10.5194/cp-11-1395-2015, 2015.
Gautier, E., Savarino, J., Erbland, J., Lanciki, A., and Possenti, P.: Variability of sulfate signal in ice core records based on five replicate cores, Clim. Past, 12, 103–113, https://doi.org/10.5194/cp-12-103-2016, 2016.
Glen, J. W., Homer, D. R., and Paren, J. G.: Water at grain boundaries: its
role in the purification of temperate glacier ice, Int. Assoc. Hydrogeol.,
118, 263–271, 1977.
Gow, A. J.: On the rates of growth of grains and crystals in South Polar
firn, J. Glaciol., 8, 241–252, 1969.
Hillert, M.: On the theory of normal and abnormal grain growth, Acta
Metall., 13, 227–238, 1965.
Iizuka, Y., Takata, M., Hondoh, T., and Fujii, Y.: High-time-resolution
profiles of soluble ions in the last glacial period of a Dome Fuji
(Antarctica) deep ice core, Ann. Glaciol., 39, 452–456, 2004.
Kaufmann, P. R., Federer, U., Hutterli, M. A., Bigler, M., Schüpbach,
S., Ruth, U., Schmitt, J., and Stocker, T. F.: An improved continuous flow
analysis system for high-resolution field measurements on ice cores,
Environ. Sci. Technol., 42, 8044–8050, https://doi.org/10.1021/es8007722, 2008.
Legrand, M. and Mayewski, P.: Glaciochemistry of polar ice cores: a review,
Rev. Geophys., 35, 219–243, 1997.
Mader, H. M.: Observations of the water-vein system in polycrystalline ice,
J. Glaciol., 38, 333–347, 1992a.
Mader, H. M.: The thermal behaviour of the water-vein system in
polycrystalline ice, J. Glaciol., 38, 359–374, 1992b.
Mayewski, P. A., Meeker, L. D., Twickler, M. S., Whitlow, S. I., Yang, Q.,
Lyons, W. B., and Prentice, M.: Major features and forcing of high-latitude
northern hemisphere atmospheric circulation using a 110,000-year-long
glaciochemical series, J. Geophys. Res., 102, 26345–26366, 1997.
Mulvaney, R., Wolff, E. W., and Oates, K.: Sulphuric acid at grain
boundaries in Antarctic ice, Nature, 331, 247–249, 1988.
Ng, F. S. L.: Statistical mechanics of normal grain growth in one dimension:
A partial integro-differential equation model, Acta Mater., 120, 453–462,
https://doi.org/10.1016/j.actamat.2016.08.033, 2016.
Ng, F.: Computer code and simulated data of the paper “Pervasive diffusion of climate signals recorded in ice-vein ionic impurities” [code], https://doi.org/10.15131/shef.data.12735191, 2021.
Ng, F. and Jacka, T. H.: A model of crystal-size evolution in polar ice
masses, J. Glaciol., 60, 463–477, https://doi.org/10.3189/2014JoG13J173, 2014.
Nye, J. F.: The geometry of water veins and nodes in polycrystalline ice, J.
Glaciol., 35, 17–22, 1989.
Nye, J. F.: Thermal behaviour of glacier and laboratory ice, J. Glaciol.,
37, 401–413, 1991.
Ohno, H., Igarashi, M., and Hondoh, T.: Salt inclusions in polar ice core:
location and chemical form of water-soluble impurities, Earth Planet. Sc.
Lett., 232, 171–178, 2005.
Osman, M., Das, S. B., Marchal, O., and Evans, M. J.: Methanesulfonic acid (MSA) migration in polar ice: data synthesis and theory, The Cryosphere, 11, 2439–2462, https://doi.org/10.5194/tc-11-2439-2017, 2017.
Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, H., Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B., Loulergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J.-R., Raisbeck, G., Raynaud, D., Ruth, U., Schwander, J., Severi, M., Spahni, R., Steffensen, J. P., Svensson, A., Udisti, R., Waelbroeck, C., and Wolff, E.: The EDC3 chronology for the EPICA Dome C ice core, Clim. Past, 3, 485–497, https://doi.org/10.5194/cp-3-485-2007, 2007.
Pol, K., Masson-Delmotte, V., Johnsen, S., Bigler, M., Cattani, O., Durand,
G., Falourd, S., Jouzel, J., Minster, B., Parrenin, F., Ritz, C.,
Steen-Larsen, H. C., and Stenni, B.: New MIS 19 EPICA Dome C high resolution
deuterium data: Hints for a problematic preservation of climate variability
at sub-millennial scale in the “oldest ice”, Earth Planet. Sc. Lett.,
298, 95–103, https://doi.org/10.1016/j.epsl.2010.07.030, 2010.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer,
H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp,
T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A
stratigraphic framework for abrupt climatic changes during the Last Glacial
period based on three synchronized Greenland ice-core records: refining and
extending the INTIMATE event stratigraphy, Quat. Sci. Rev., 106, 14–28,
https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
Rempel, A. W. and Wettlaufer, J. S.: Segregation, transport, and interaction
of climate proxies in polycrystalline ice, Can. J. Phys., 81, 89–97, 2003.
Rempel, A. W., Wettlaufer, J. S., and Waddington, E. D.: Anomalous diffusion
of multiple impurity species: Predicted implications for the ice core
climate records, J. Geophys. Res., 107, 2330, https://doi.org/10.1029/2002JB001857,
2002.
Ritz, C.: Un modèle thermo-mécanique d'évolution pour le basin
glaciaire Antarctique Vostok-Glacier Byrd: Sensibilité aux valeurs des
paramètres mal connus, PhD thesis, Laboratoire de Glaciologie et
Géophysique de l'Environnement, Université Joseph Fourier, Grenoble,
377 pp., 1992.
Röthlisberger, R., Mudelsee, M., Bigler, M., de Angelis, M., Fischer, H., Hansson, M., Lambert, F., Masson-Delmotte, V., Sime, L., Udisti, R., and Wolff, E. W.: The Southern Hemisphere at glacial terminations: insights from the Dome C ice core, Clim. Past, 4, 345–356, https://doi.org/10.5194/cp-4-345-2008, 2008.
Schüpbach, S. Fischer, H., Bigler, M., Erhardt, T., Gfeller, G.,
Leuenberger, D., Mini, O., Mulvaney, R., Abram, N. J., Fleet, L., Frey, M.
M., Thomas, E., Svensson, A., Dahl-Jensen, D., Kettner, E., Kjaer, H.,
Seierstad, I., Steffensen, J. P., Rasmussen, S. O., Vallelonga, P.,
Winstrup, M., Wegner, A., Twarloh, B., Wolff, K., Schmidt, K., Goto-Azuma,
K., Kuramoto, T., Hirabayashi, M., Uetake, J., Zheng, J., Bourgeois, J.,
Fisher, D., Zhiheng, D., Xiao, C., Legrand, M., Spolaor, A., Gabrieli, J.,
Barbante, C., Kang, J.-H., Hur, S. D., Hong, S. B., Hwang, H. J., Hong, S.,
Hansson, M., Iizuka, Y., Oyabu, I., Muscheler, R., Adolphi, F., Maselli, O.,
McConnell, J., and Wolff, E. W.: Greenland records of aerosol source and
atmospheric lifetime changes from the Eemian to the Holocene, Nat. Commun.,
9, 1476, https://doi.org/10.1038/s41467-018-03924-3, 2018.
Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J.,
Brook, E., Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E.,
Dahl-Jensen, D., Davies, S. M., Guillevic, M., Johnsen, S. J., Pedersen, D.
S., Popp, T. J., Rasmussen, S. O., Severinghaus, J. P., Svensson, A., and
Vinther, B. M.: Consistently dated records from the Greenland GRIP, GISP2
and NGRIP ice cores for the past 104 ka reveal regional millennial-scale
δ18O gradients with possible Heinrich event imprint, Quat. Sci.
Rev., 106, 29–46, https://doi.org/10.1016/j.quascirev.2014.10.032, 2014.
Severi, M., Becagli, S., Castellano, E., Morganti, A., Traversi, R., Udisti, R., Ruth, U., Fischer, H., Huybrechts, P., Wolff, E., Parrenin, F., Kaufmann, P., Lambert, F., and Steffensen, J. P.: Synchronisation of the EDML and EDC ice cores for the last 52 kyr by volcanic signature matching, Clim. Past, 3, 367–374, https://doi.org/10.5194/cp-3-367-2007, 2007.
Svensson, A., Bigler, M., Blunier, T., Clausen, H. B., Dahl-Jensen, D., Fischer, H., Fujita, S., Goto-Azuma, K., Johnsen, S. J., Kawamura, K., Kipfstuhl, S., Kohno, M., Parrenin, F., Popp, T., Rasmussen, S. O., Schwander, J., Seierstad, I., Severi, M., Steffensen, J. P., Udisti, R., Uemura, R., Vallelonga, P., Vinther, B. M., Wegner, A., Wilhelms, F., and Winstrup, M.: Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP), Clim. Past, 9, 749–766, https://doi.org/10.5194/cp-9-749-2013, 2013.
Thorsteinsson, T., Kipfstuhl, J., Eicken, H., Johnsen, S. J., and Fuhrer,
K.: Crystal size variations in Eemian-age ice from the GRIP ice core,
Central Greenland, Earth Planet. Sc. Lett., 131, 381–394, 1995.
Thorsteinsson, T., Kipfstuhl, J., and Miller, H.: Textures and fabrics in
the GRIP ice core, J. Geophys. Res., 102, 26583–26599, 1997.
Tison, J.-L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, M., Bigler, M., Udisti, R., Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmotte, V., Landais, A., Lipenkov, V., Loulergue, L., Barnola, J.-M., Petit, J.-R., Delmonte, B., Dreyfus, G., Dahl-Jensen, D., Durand, G., Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R., and Samyn, D.: Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core, The Cryosphere, 9, 1633–1648, https://doi.org/10.5194/tc-9-1633-2015, 2015.
Traversi, R., Becagli, S., Castellano, E., Marino, F., Rugi, F., Severi, M.,
de Angelis, M., Fischer, H., Hansson, M., Stauffer, B., Steffensen, J. P.,
Bigler, M., and Udisti, R.: Sulfate spikes in the deep layers of EPICA-Dome
C ice core: Evidence of glaciological artifacts, Environ. Sci. Technol., 43,
8737–8743, https://doi.org/10.1021/es901426y, 2009.
Wolff, E. W., Mulvaney, R., and Oates, K.: The location of impurities in
Antarctic ice, Ann. Glaciol., 11, 194–197, 1988.
Wolff, E. W., Cook, E., Barnes, P. R. F., and Mulvaney, R.: Signal
variability in replicate ice cores, J., Glaciol., 51, 462–468, 2005.
Wolff, E. W., Fisher, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C.,
Mulvaney, R., Röthlisberger, R., de Angelis, M., Boutron, C. F.,
Hansson, M., Jonsell, U., Hutterli, M. A., Lambert, F., Kaufmann, P.,
Stauffer, B., Stocker, T. F., Steffensen, J. P., Bigler, M.,
Siggaard-Andersen, M. L., Udisti, R., Becagli, S., Castellano, E., Severi,
M., Wagenbach, D., Barbante, C., Gabrielli, P., and Gaspari, V.: Southern
Ocean sea-ice extent, productivity and iron flux over the past eight glacial
cycles, Nature, 440, 491–496, https://doi.org/10.1038/nature04614, 2006.
Short summary
Current theory predicts climate signals in the vein chemistry of ice cores to migrate, hampering their dating. I show that the Gibbs–Thomson effect, which has been overlooked, causes fast diffusion that prevents signals from surviving into deep ice. Hence the deep climatic peaks in Antarctic and Greenlandic ice must be due to impurities in the ice matrix (outside veins) and safe from migration. These findings reset our understanding of postdepositional changes of ice-core climate signals.
Current theory predicts climate signals in the vein chemistry of ice cores to migrate, hampering...