Articles | Volume 15, issue 3
https://doi.org/10.5194/tc-15-1277-2021
https://doi.org/10.5194/tc-15-1277-2021
Research article
 | 
11 Mar 2021
Research article |  | 11 Mar 2021

Estimating parameters in a sea ice model using an ensemble Kalman filter

Yong-Fei Zhang, Cecilia M. Bitz, Jeffrey L. Anderson, Nancy S. Collins, Timothy J. Hoar, Kevin D. Raeder, and Edward Blanchard-Wrigglesworth

Related authors

Bounded and categorized: targeting data assimilation for sea ice fractional coverage and nonnegative quantities in a single-column multi-category sea ice model
Molly M. Wieringa, Christopher Riedel, Jeffrey L. Anderson, and Cecilia M. Bitz
The Cryosphere, 18, 5365–5382, https://doi.org/10.5194/tc-18-5365-2024,https://doi.org/10.5194/tc-18-5365-2024, 2024
Short summary
Exploring non-Gaussian sea ice characteristics via observing system simulation experiments
Christopher Riedel and Jeffrey Anderson
The Cryosphere, 18, 2875–2896, https://doi.org/10.5194/tc-18-2875-2024,https://doi.org/10.5194/tc-18-2875-2024, 2024
Short summary
Advantages of assimilating multispectral satellite retrievals of atmospheric composition: a demonstration using MOPITT carbon monoxide products
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Daniel Ziskin, Debbie Mao, David Edwards, Avelino Arellano, Kevin Raeder, Jeffrey Anderson, and Helen Worden
Atmos. Meas. Tech., 17, 1941–1963, https://doi.org/10.5194/amt-17-1941-2024,https://doi.org/10.5194/amt-17-1941-2024, 2024
Short summary
Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)–RTTOV (v12.3)
Young-Chan Noh, Yonghan Choi, Hyo-Jong Song, Kevin Raeder, Joo-Hong Kim, and Youngchae Kwon
Geosci. Model Dev., 16, 5365–5382, https://doi.org/10.5194/gmd-16-5365-2023,https://doi.org/10.5194/gmd-16-5365-2023, 2023
Short summary
Extending ensemble Kalman filter algorithms to assimilate observations with an unknown time offset
Elia Gorokhovsky and Jeffrey L. Anderson
Nonlin. Processes Geophys., 30, 37–47, https://doi.org/10.5194/npg-30-37-2023,https://doi.org/10.5194/npg-30-37-2023, 2023
Short summary

Related subject area

Discipline: Sea ice | Subject: Data Assimilation
Bounded and categorized: targeting data assimilation for sea ice fractional coverage and nonnegative quantities in a single-column multi-category sea ice model
Molly M. Wieringa, Christopher Riedel, Jeffrey L. Anderson, and Cecilia M. Bitz
The Cryosphere, 18, 5365–5382, https://doi.org/10.5194/tc-18-5365-2024,https://doi.org/10.5194/tc-18-5365-2024, 2024
Short summary
Assimilation of satellite swaths versus daily means of sea ice concentration in a regional coupled ocean–sea ice model
Marina Durán Moro, Ann Kristin Sperrevik, Thomas Lavergne, Laurent Bertino, Yvonne Gusdal, Silje Christine Iversen, and Jozef Rusin
The Cryosphere, 18, 1597–1619, https://doi.org/10.5194/tc-18-1597-2024,https://doi.org/10.5194/tc-18-1597-2024, 2024
Short summary
Local analytical optimal nudging for assimilating AMSR2 sea ice concentration in a high-resolution pan-Arctic coupled ocean (HYCOM 2.2.98) and sea ice (CICE 5.1.2) model
Keguang Wang, Alfatih Ali, and Caixin Wang
The Cryosphere, 17, 4487–4510, https://doi.org/10.5194/tc-17-4487-2023,https://doi.org/10.5194/tc-17-4487-2023, 2023
Short summary
Towards improving short-term sea ice predictability using deformation observations
Anton Korosov, Pierre Rampal, Yue Ying, Einar Ólason, and Timothy Williams
The Cryosphere, 17, 4223–4240, https://doi.org/10.5194/tc-17-4223-2023,https://doi.org/10.5194/tc-17-4223-2023, 2023
Short summary
Assimilating CryoSat-2 freeboard to improve Arctic sea ice thickness estimates
Imke Sievers, Till A. S. Rasmussen, and Lars Stenseng
The Cryosphere, 17, 3721–3738, https://doi.org/10.5194/tc-17-3721-2023,https://doi.org/10.5194/tc-17-3721-2023, 2023
Short summary

Cited articles

Anderson, J.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2002. 
Anderson, J. L.: An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus, 59, 210–224, 2007. 
Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Arellano, A.: The Data Assimilation Research Testbed: Acommunity facility, B. Am. Meteor. Soc., 90, 1283–1296, https://doi.org/10.1175/2009BAMS2618.1, 2009. 
Annan, J. D., Hargreaves, J. C., Edwards, N. R., and Marsh, R.: Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter, Ocean Modell., 8, 135–154, https://doi.org/10.1016/j.ocemod.2003.12.004, 2005. 
Blanchard-Wrigglesworth, E., Armour, K. C., Bitz, C. M., and deWeaver, E.: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations, J. Climate, 24, 231–250, https://doi.org/10.1175/2010JCLI3775.1, 2011. 
Download
Short summary
Sea ice models suffer from large uncertainties arising from multiple sources, among which parametric uncertainty is highly under-investigated. We select a key ice albedo parameter and update it by assimilating either sea ice concentration or thickness observations. We found that the sea ice albedo parameter is improved by data assimilation, especially by assimilating sea ice thickness observations. The improved parameter can further benefit the forecast of sea ice after data assimilation stops.