Articles | Volume 15, issue 3
https://doi.org/10.5194/tc-15-1277-2021
https://doi.org/10.5194/tc-15-1277-2021
Research article
 | 
11 Mar 2021
Research article |  | 11 Mar 2021

Estimating parameters in a sea ice model using an ensemble Kalman filter

Yong-Fei Zhang, Cecilia M. Bitz, Jeffrey L. Anderson, Nancy S. Collins, Timothy J. Hoar, Kevin D. Raeder, and Edward Blanchard-Wrigglesworth

Related authors

SPREADS: From Research to Operational Open-Source Data Assimilation System
Carla Cardinali, Giovanni Conti, Marcelo Guatura, Sami Saarinen, Luis Gustavo Gonçalves De Gonçalves, Jeffrey Anderson, and Kevin Raeder
EGUsphere, https://doi.org/10.5194/egusphere-2025-4294,https://doi.org/10.5194/egusphere-2025-4294, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Sea Ice Albedo Bounded Data Assimilation and Its Impact on Modeling: A Regional Approach
Joseph Fortunato Rotondo, Molly Michael Wieringa, Cecilia Marie Bitz, Robin Clancy, and Steven Cavallo
EGUsphere, https://doi.org/10.5194/egusphere-2025-2540,https://doi.org/10.5194/egusphere-2025-2540, 2025
Short summary
Regime-dependence when constraining a sea ice model with observations: lessons from a single-column perspective
Molly M. Wieringa and Cecilia M. Bitz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2148,https://doi.org/10.5194/egusphere-2025-2148, 2025
Short summary
Bounded and categorized: targeting data assimilation for sea ice fractional coverage and nonnegative quantities in a single-column multi-category sea ice model
Molly M. Wieringa, Christopher Riedel, Jeffrey L. Anderson, and Cecilia M. Bitz
The Cryosphere, 18, 5365–5382, https://doi.org/10.5194/tc-18-5365-2024,https://doi.org/10.5194/tc-18-5365-2024, 2024
Short summary
Exploring non-Gaussian sea ice characteristics via observing system simulation experiments
Christopher Riedel and Jeffrey Anderson
The Cryosphere, 18, 2875–2896, https://doi.org/10.5194/tc-18-2875-2024,https://doi.org/10.5194/tc-18-2875-2024, 2024
Short summary

Cited articles

Anderson, J.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2002. 
Anderson, J. L.: An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus, 59, 210–224, 2007. 
Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Arellano, A.: The Data Assimilation Research Testbed: Acommunity facility, B. Am. Meteor. Soc., 90, 1283–1296, https://doi.org/10.1175/2009BAMS2618.1, 2009. 
Annan, J. D., Hargreaves, J. C., Edwards, N. R., and Marsh, R.: Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter, Ocean Modell., 8, 135–154, https://doi.org/10.1016/j.ocemod.2003.12.004, 2005. 
Blanchard-Wrigglesworth, E., Armour, K. C., Bitz, C. M., and deWeaver, E.: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations, J. Climate, 24, 231–250, https://doi.org/10.1175/2010JCLI3775.1, 2011. 
Download
Short summary
Sea ice models suffer from large uncertainties arising from multiple sources, among which parametric uncertainty is highly under-investigated. We select a key ice albedo parameter and update it by assimilating either sea ice concentration or thickness observations. We found that the sea ice albedo parameter is improved by data assimilation, especially by assimilating sea ice thickness observations. The improved parameter can further benefit the forecast of sea ice after data assimilation stops.
Share