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Abstract. Uncertain or inaccurate parameters in sea ice mod-
els influence seasonal predictions and climate change projec-
tions in terms of both mean and trend. We explore the fea-
sibility and benefits of applying an ensemble Kalman filter
(EnKF) to estimate parameters in the Los Alamos sea ice
model (CICE). Parameter estimation (PE) is applied to the
highly influential dry snow grain radius and combined with
state estimation in a series of perfect model observing sys-
tem simulation experiments (OSSEs). Allowing the parame-
ter to vary in space improves performance along the sea ice
edge but degrades in the central Arctic compared to requir-
ing the parameter to be uniform everywhere, suggesting that
spatially varying parameters will likely improve PE perfor-
mance at local scales and should be considered with caution.
We compare experiments with both PE and state estimation
to experiments with only the latter and have found that the
benefits of PE mostly occur after the data assimilation pe-
riod, when no observations are available to assimilate (i.e.,
the forecast period), which suggests PE’s relevance for im-
proving seasonal predictions of Arctic sea ice.

1 Introduction

Arctic sea ice has undergone rapid decline in recent decades
in all seasons (e.g., Stroeve et al., 2012; Serreze and Stroeve,
2015). The frequent large deviations of Arctic sea ice cover
from its climatology and the impact of sea ice cover on the
overlying atmosphere and on ocean–atmosphere fluxes moti-
vate including an active sea ice component in seasonal-to-

sub-seasonal (S2S) weather forecasts (Vitart et al., 2015).
The persistence and reemergence of sea ice thickness (SIT)
and sea surface temperature anomalies are major sources
of predictability for Arctic sea ice extent (SIE; Blanchard-
Wrigglesworth et al., 2011). Previous studies have demon-
strated the importance of accurate initial conditions, espe-
cially SIT, in predicting Arctic sea ice extent (Day et al.,
2014). Hence studies applying data assimilation (DA) tech-
niques to fuse observations with model simulations are ac-
tively investigated (e.g., Lisæter et al., 2003; Chen et al.,
2017; Massonnet et al., 2015), most of which are focused
on improving model states only, not the parameters in sea ice
parameterization schemes.

Sea ice models, like other components of Earth system
models, can suffer large uncertainties originating from uncer-
tain parameters. The widely used Los Alamos sea ice model
version 5 (CICE5), given its various complex schemes, has
hundreds of uncertain parameters, such as in the Delta-
Eddington shortwave radiation scheme (Briegleb and Light,
2007). The default values of these parameters are usually
chosen based on point measurements that are taken on multi-
year sea ice (Light et al., 2008). Urrego-Blanco et al. (2015)
conducted an uncertainty quantification study of CICE5 and
ranked the parameters based on the sensitivities of model pre-
dictions to a list of parameters. This work provides guidance
on which parameters could be estimated using an objective
method and during which seasons. Their findings suggest
that the estimates of the Arctic sea ice area and extent are
especially sensitive to certain parameters (e.g., snow con-
ductivity and snow grain size) in summer. However, they
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also discussed that their sensitivities could be low as a con-
sequence of prescribing atmospheric forcing in their model
setup, so parametric uncertainties are expected to be larger
year-round (particularly in winter) in a fully coupled model.
Previous studies suggest that the ensemble spread of sea ice
states is generally small in winter (e.g., Lisaeter et al., 2003;
Fritzner et al., 2018; Zhang et al., 2018), which will lead to
limited update on model state variables or parameters. Also,
sea ice concentration (SIC) reaches 100 % in most of regions
in winter and hence does not leave enough room for improve-
ments by DA. The ensemble spread in summer, however, is
much larger. Since we run stand-alone CICE5 given that our
aim is to demonstrate the utility of parameter estimation (PE)
for sea ice, we conduct DA experiments with PE in summer.

Two types of observations are assimilated in our study, sea
ice concentration and thickness (SIC and SIT, respectively).
Satellite-retrieved SIC observations are widely utilized in the
sea ice DA community, while the application of SIT observa-
tions is more challenging given its large uncertainty and lack
of data in summer (Zygmuntowska et al., 2014). Previous
studies on Arctic sea ice predictability emphasized the im-
portance of summer SIT observations (e.g., Day et al., 2014;
Dirkson et al., 2017). We explore the benefits of SIT obser-
vations (in addition to SIC) on sea ice parameter estimation
and advocate the need to extend the data coverage of SIT
observations into late spring and summer, which is actually
possible in ICESat-2 (Kwok et al., 2020).

Despite the importance of sea ice model parameters, few
studies have tried to estimate or reduce the parametric un-
certainties, partly due to the large effort and computational
cost if parameter calibration is done in a trial-and-error fash-
ion. A more systematic way is through DA. Anderson (2002)
demonstrated the feasibility of updating parameters using an
ensemble filter in a low-order model. Annan et al. (2005)
were among the first to apply an ensemble filter to estimate
parameters in a complex Earth system model. Massonnet et
al. (2014) employed the ensemble Kalman filter (EnKF) in
a sea ice model to estimate three parameters that control sea
ice dynamics. In addition to achieving their goal of improv-
ing the sea ice drift, they also realized slight improvements in
the SIT distribution and extent as well as in the sea ice export
through the Fram Strait.

Our purpose is to expand upon previous studies to ex-
plore the feasibility of optimizing sea ice parameters by ask-
ing how different observations (concentration and thickness
in this study) would constrain the parameters differently,
whether we need to allow parameters to vary spatially, and
what the benefits are of the updated parameters both when
observations are available for assimilation (the DA period)
and when observations are not available (the forecast period).

2 The sea ice data assimilation framework

We use CICE5 linked to the Data Assimilation Research
Testbed (DART) (Anderson et al., 2009) within the frame-
work of the Community Earth System Model version 2
(CESM2) (http://www.cesm.ucar.edu/models/cesm2, last ac-
cess: May 2019). The ocean is modeled as a slab ocean, and
the atmospheric forcing is prescribed from a DART/CAM
ensemble reanalysis (Raeder et al., 2012). Details of this
framework can be found in Zhang et al. (2018). The default
DART/CICE framework is only used for state estimation; we
extend DART/CICE to include parameter estimation in this
study. During the assimilation, DART and CICE5 cycle be-
tween a DA step with DART and a 1 d forecast step with
CICE5. During the DA step, the selected sea ice variables
are placed into a “DART state vector” that is to be passed
to the filter. The DART state vector is augmented by adding
selected sea ice parameters, so that the parameters and state
variables are both updated by the filter in the same way. The
updated state variables are then post-processed (if needed)
and sent with the updated parameters back to CICE5 for
the next 1 d forecast step. The post-process step is necessary
when the updated variable goes beyond its physical bound-
aries, for example, when SIC is negative or larger than 100 %.
Unlike state variables, the parameters are not modified dur-
ing CICE5 forecast steps.

3 Experiment design and evaluation methods

The parameter we select, Rsnw, represents the standard de-
viation of dry snow grain radius that controls the optical
properties of snow and is one of the key parameters that de-
termine snow albedo in the Delta-Eddington solar radiation
parameterization treatment (Briegleb and Light, 2007). We
pick Rsnw because it is one of the parameters that the model
predictions are sensitive to (Urrego-Blanco et al., 2016) and
is also one of the parameters perturbed to generate ensem-
ble spread in Zhang et al. (2018). Instead of directly tuning
snow albedo that could result in inconsistencies with the rest
of the parameterization scheme, tuning Rsnw changes the in-
herent optical properties of snow in a self-consistent fashion
(Briegleb and Light, 2007). Increasing Rsnw leads to smaller
dry snow grain radius and larger snow albedo (Hunke et al.,
2015). The default value of Rsnw is 1.5, which corresponds
to a fresh snow grain radius of 125 µm (Holland et al., 2012).
Many parameters in CICE5, like Rsnw, have default values
based on limited field observations. As sea ice models in-
crease in complexity, empirical parameters will increasingly
need to be calibrated objectively. More comprehensive ob-
servations at a large scale will presumably benefit a better
representation of snow and ice properties in sea ice models.

The configurations of conducted experiments are listed in
Table 1. We begin with a free run of CICE5 without DA
(hereafter FREE) with 30 ensemble members. Each ensem-
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ble member has a unique value of Rsnw, which is constant
in time and space. The ensemble of Rsnw values is randomly
drawn from a uniform distribution spanning −2 to 2. One
of the ensemble members is designated as the truth with the
true value of Rsnw. Following Zhang et al. (2018), synthetic
observations are created by adding random noise to SIC and
SIT taken from the truth ensemble member. The noise fol-
lows a normal distribution with zero mean and a standard
deviation of 15 % for SIC and 40 cm for SIT. The FREE ex-
periment does not assimilate any observations, and the Rsnw
values stay the same throughout the experimental period.

We then conduct two pairs of experiments to test the fea-
sibility of estimating parameters using the ensemble adjust-
ment Kalman filter (EAKF) (Anderson, 2002), which is a de-
terministic ensemble square root filter. Each experiment as-
similates daily SIC or SIT synthetic observations. The first
pair is referred to as DAsicPEcst and DAsitPEcst, with the
former assimilating SIC observations and the latter SIT ob-
servations. In the first pair, each ensemble member has a
unique spatially uniform Rsnw. The second pair is referred to
as DAsicPEvar and DAsitPEvar, which has a separate value
of Rsnw at each horizontal grid point. The augmented state
has the single parameter for Rsnw in the first pair or the two-
dimensional grid of Rsnw parameters in the second pair.

All variables in the sea ice state vector are two-
dimensional in space. The parameter Rsnw and the state vari-
ables were updated based on their correlations with neigh-
boring observations. The posterior ensemble generated by
DART is always spatially varying. For the first pair of ex-
periments, we take an area-weighted average of the two-
dimensional posterior to get a spatially invariant Rsnw to send
back to CICE5. For the second pair of experiments, the spa-
tially varying posterior Rsnw was sent to CICE5. In all exper-
iments, the sea ice component is run for 1 d to produce a new
state that is augmented with the posterior Rsnw of the previ-
ous DA step. To increase the prior ensemble spread of Rsnw,
a spatially and temporally adaptive inflation was applied to
the priors of both the model states and Rsnw before they are
sent to the filter (Anderson, 2007). The initial value, standard
deviation, and inflation damping value of the adaptive infla-
tion are 1.0, 0.6, and 0.9, respectively. The localization half-
width is 0.01 radians (about 64 km) as discussed in Zhang et
al. (2018). We also reject observations that are 3 standard de-
viations of the expected difference away from the ensemble
mean of the forecast.

A third pair of experiments is conducted with only state
DA (no parameter estimation), known as DAsic and DAsit,
which assimilate daily SIC and SIT synthetic observations,
respectively. DAsic and DAsit have the same ensemble set
of Rsnw, which is also the initial set of Rsnw in the above PE
experiments. The ensemble of Rsnw remains fixed throughout
the experiment period.

All experiments begin on 1 April 2005 and run for 18
months. Synthetic observations are assimilated only during
the first 6 months (the DA period), and the next 12 months

Figure 1. Time series of (a) the Arctic sea ice area and (b) sea
ice volume from a free CICE5 run. Each gray line represents one
ensemble member, black line the ensemble mean, and red line the
truth. Time series of (c) the parameter Rsnw for two DA experi-
ments. Blue line represents DAsicPEcst that assimilates SIC obser-
vations, and magenta represents DAsitPEcst that assimilates SIT.
The red reference line indicates the true value of Rsnw. Each error
bar represents 2 standard deviations of the 30 ensemble members of
Rsnw. Error bar is shown for every 5 d.

are a pure forecast period to mimic the real-world situation
when making a forecast. The values of Rsnw hold constant
once DA ceases. We do not perform DA beyond October
2005 for two reasons. First, sea ice states have small ensem-
ble spread in winter, as illustrated in Fig. 1a, so DA updates
tend to be small. In contrast, the relatively larger spread from
April to October ensures that assimilating observations can
have more impact in updating model state variables and pa-
rameters. Second, the snow albedo feedback only influences
the sea ice state when sunlight is present.

Several commonly used error indices are calculated to
evaluate the performance of the experiments. The root-mean-
square error (RMSE) of Arctic SIE and the area-weighted
spatially averaged root-mean-square error (RMSEt ) are de-
fined as follows:
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Table 1. List of experiments with different configurations and RMSE of the total Arctic sea ice area and volume calculated over two
experiment periods: DA (April to October 2005) and forecast (April to September 2006) for the seven experiments. All the experiments use
the same localization half-width and prior inflation algorithm as stated in Sect. 3.

Observations estimate RMSE of Arctic sea RMSE of Arctic sea ice
Experiments assimilated Parameter area (106 km2) volume (103 km3)

DA Forecast DA Forecast

FREE None None 0.250 0.343 0.711 1.302
DAsic SIC None 0.120 (−52 %) 0.345 (4 %) 0.583 (−18 %) 1.285 (−1 %)
DAsicPEcst SIC Spatially constant 0.114 (−55 %) 0.217 (−37 %) 0.520 (−27 %) 0.887 (−32 %)
DAsicPEvar SIC Spatially varying 0.123 (−51 %) 0.240 (−30 %) 0.601 (−16 %) 1.130 (−13 %)
DAsit SIT None 0.113 (−55 %) 0.327 (−5 %) 0.247 (−65 %) 0.868 (−33 %)
DAsitPEcst SIT Spatially constant 0.103 (−59 %) 0.141 (−59 %) 0.210 (−70 %) 0.349 (−73 %)
DAsitPEvar SIT Spatially varying 0.103 (−59 %) 0.129 (−63 %) 0.222 (−69 %) 0.376 (−71 %)

RMSE=

√∑N
i=1(x

m
i − xt

i )
2

N
,

RMSEt =

√∑M
j=1(x

m
j − xt

j )
2

M
, (1)

where i and j are the indices in time and space, x refers to
Arctic SIE in RMSE and may refer to parameters or model
states in RMSEt , N is the number of days, and M is the num-
ber of grid cells. The superscripts m and t refer to model
and truth, respectively. The overbar indicates the mean of the
model ensemble.

Model bias is defined as the mean of the 30-member en-
semble of the experiments minus the truth. Absolute bias dif-
ference (ABD) between two experiments is defined as fol-
lows:

ABD=
∣∣∣xcase1

i − xt
i

∣∣∣− ∣∣∣xcase2
i − xt

i

∣∣∣ , (2)

where x may refer to parameters or model states, the super-
scripts t refers to the truth, and case1 and case2 refer to the
two experiments to compare. The overbar indicates the mean
of the model ensemble.

4 Results and discussion

4.1 Temporally and spatially invariant parameters

The ensemble mean of FREE underestimates SIC through-
out the year (Fig. 1a) partly because our arbitrary ensem-
ble member selected as the truth has an above-average Rsnw
(Fig. 1c). As such, we would intuitively expect Rsnw to have
a positive increment as a result of assimilating SIC observa-
tions. Figure 1c confirms that Rsnw increments are positive,
with the posterior ensemble mean gradually approaching the
true value during the DA period in the spatially constant
PE experiments (DAsicPEcst and DAsitPEcst). The posterior

Rsnw has smaller ensemble spread than the prior Rsnw (also
see Fig. S1d, e, and f), which is consistent with the EAKF
theory. In Fig. 1c DAsitPEcst outperforms DAsicPEcst start-
ing in June, indicating that SIT provides more information
than SIC for Rsnw. Similarly, with state-only DA, Zhang et
al. (2018) found that SIT is more efficient than SIC obser-
vations at constraining state variables. There could be sev-
eral reasons why the rate at which Rsnw approaches the true
value decreases with time. First, the ensemble spread of Rsnw
may be insufficient because no uncertainty is introduced into
Rsnw in CICE5 during the forecast step. It is an open ques-
tion how much additional uncertainty should be introduced
into the parameters. To help avoid filter divergence, we ap-
ply the prior adaptive inflation to the parameters (as well as
to the model states), which may still be not enough. Second,
the correlation between Rsnw and the observations may be
too weak. Solar radiation becomes very low by the end of
September, and hence Rsnw has little impact on sea ice, which
explains the weak correlation between Rsnw and the observa-
tions (further discussed below). Either reason could result in
a negligible update to Rsnw.

The correlations between Rsnw and the observations have
unique spatial patterns and evolve with time. On 1 May,
the correlation between Rsnw and SIC is generally positive
(Fig. 2a). The positive correlations are significant especially
where SIC is under ∼ 100 %. Larger Rsnw corresponds to
higher snow albedo and more reflected sunlight, which in
turn delays the melting of sea ice. The correlations are still
significant along the ice edges in August (Fig. 2c) and be-
come noisier and have less significant values by the end of
the melt season (Fig. 2e). The correlation between Rsnw and
SIT has different spatial patterns (Fig. S2b, d, and f). Neg-
ative correlations between Rsnw and SIT on 1 May can be
seen in the Chukchi Sea, Beaufort Sea, and East Siberian
Sea, where Rsnw and SIC have positive correlations. This
suggests that where SIC increases with Rsnw in spring it is
possible that SIT actually decreases, which might be due to
elevated concentration raising the compressive strength and
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Figure 2. Correlations between (a) Rsnw and SIC and (b) Rsnw and
SIT for 1 May 2005, (c) Rsnw and SIC and (d) Rsnw and SIT for
1 August 2005, and (e) Rsnw and SIC and (f) Rsnw and SIT for 1
October 2005. At each point, we calculate the correlation of Rsnw
and the observed quantities across the 30 ensemble members on the
selected dates. The posterior states outputted from the experiments
DAsicPEcst and DAsitPEcst are used for calculation.

reducing sea ice deformation. While a brighter surface is able
to reduce thickness over large regions in spring, the effect is
mostly gone by the end of summer, when positive correlation
prevails.

4.2 Spatially varying Rsnw

We discussed in Sect. 4.1 that processes relating Rsnw and ob-
served quantities have complex spatial features. The spatial
map of the posterior Rsnw and the reduction in the ensemble
spread of Rsnw after EAKF in the first pair of experiments
(Fig. S1) also suggest that the updates are concentrated on
the ice marginal zones. It may be too crude to use a sin-
gle value of Rsnw for the whole Arctic. We let Rsnw be a
spatially varying parameter in the second pair of PE experi-

ments, even though the true Rsnw is spatially invariant. The
spatial features of Rsnw will purely depend on how Rsnw cor-
relates with the observations. As in DAsicPEcst and DAsit-
PEcst, the analysis field of Rsnw is spatially varying, and we
did a spatial averaging to get a single number for the next run.
Rsnw along the sea ice edges gets updated more, while Rsnw
in the center is less influenced. But the averaging smoothed
out this spatial feature. In DAsicPEvar and DAsitPEvar, we
let the spatially varying 2D analysis field of Rsnw be the Rsnw
field in the next run, so the spatial feature was carried along
the simulation.

Figure 3 depicts the ABD of Rsnw (defined in Sect. 2) be-
tween different pairs of experiments at the end of the DA
period. Figure 3a and d confirm that DAsicPEcst and DAsit-
PEcst improve the Rsnw compared to FREE. Figure 3b and
e show the spatial feature of improvements or degradations
in Rsnw for the two spatially varying PE experiments. They
both show the contrast between the ice marginal zones and
the central Arctic. Improvements are mostly seen along the
ice edges. Spotty improvements in the inner Arctic can be
found in DAsitPEvar (Fig. 3e), while degradations are pre-
vailing in the inner Arctic in DAsicPEvar (Fig. 3b). Figure 3c
and f highlight the improvements or degradations from al-
lowing Rsnw to vary spatially. The general features are that
DAsicPEvar and DAsitPEvar have reduced Rsnw biases more
along the ice edges compared with DAsicPEcst and DA-
sitPEcst. However, degradations (Fig. 3c) or negligible im-
provements (Fig. 3f) are found in the central Arctic. This
suggests that spatially invariant PE generally works better for
the whole pan-Arctic regions, while spatially varying PE can
work well in the ice marginal zones but not in the central Arc-
tic, especially when SIC is the only observed quantity. SIC
has little variability in the central Arctic, and hence assimi-
lating the SIC observations will not add much information for
parameters or model states. Besides the improvements along
the sea ice edges, the SIT DA also has a benefit in the inner
ice pack (Fig. 3e), which is consistent with the results of the
first pair of experiments that SIT in general provides more in-
formation than the SIC observations, especially in the regions
where SIC has little variability. However, spatially varying
Rsnw has small advantages over spatially invariant Rsnw in
the ice marginal regions but degradations in the central Arc-
tic too (Fig. 3f). The degradations in Rsnw but improvements
in SIC (Fig. 5a and c; discussed in Sect. 4.3) in the central
Arctic suggest that Rsnw is likely over-adjusted to cancel out
other errors (e.g., noise from atmospheric forcing fields).

4.3 Additional improvements in model states

We demonstrated that Rsnw approaches the true value by as-
similating SIC or SIT (at different rates) in the previous sec-
tions. We now investigate whether PE also improves the sim-
ulation of model states, beginning with time series of the pan-
Arctic sea ice area and volume in all of our experiments (see
Fig. 4).
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Figure 3. The differences of absolute mean bias (ABD; see Eq. 2)
of Rsnw between the DA experiments – (a) DAsicPEcst, (b) DA-
sicPEvar, (d) DAsitPEcst, and (e) DAsitPEvar – and the control ex-
periment FREE, and between the spatially varying PE experiments
and the spatially constant PE experiments: (c) DAsicPEvar and DA-
sicPEcst, and (f) DAsitPEvar and DAsitPEcst.

In our preceding work, we showed that assimilating SIC
and SIT could improve model states (Zhang et al., 2018),
which can also be confirmed in Fig. 4. During the DA period,
DAsic can efficiently reduce biases in area, but DAsic has
limited influence on volume. Within about a month into the
forecast period, DAsic improves neither area nor volume. In
contrast, DAsit is highly beneficial at reducing both area and
volume during the DA period, with at least some improve-
ment to volume persisting through the whole 1-year forecast
period.

We find that updating Rsnw has a relatively large impact on
volume beginning in spring of the forecast period (Fig. 4b).
Treating Rsnw as either a spatially varying or a constant pa-
rameter has about the same effect until late summer of the
forecast period. In fact, all of the PE experiments outper-
form the state-only DA experiments in the forecast period.
As shown in Table 1, SIT DA with PE always performs the
best, reducing the bias in area by up to 63 % and reducing
the bias in volume by up to 73 %. SIC DA with PE is sec-
ond best in terms of simulating the area, reducing the bias
by up to 37 %. SIC DA with PE is comparable to DAsit in
simulating volume, reducing the bias by around 30 %.

Finally, we compare the spatial patterns of bias reduc-
tion in SIC and SIT from PE experiments by comparing
RMSEt of SIT in DAsicPEcst and DAsitPEcst to their state-
only DA counterparts, DAsic and DAsit (see Fig. 5). The
comparisons are made in two periods: the DA period (April
to October 2005) and the forecast period (April to Septem-
ber 2006). Zhang et al. (2018) showed that the DAsic could

Figure 4. Daily biases of (a) the total Arctic sea ice area and (b) the
total Arctic sea ice volume for FREE (black), DAsic (blue), DA-
sicPEcst (green), DAsicPEvar (purple), DAsit (orange), DAsitPEcst
(pink), and DAsitPEvar (red). Gray dash line in each plot represents
the zero reference line. The blue line in panel (a) is overlapped by
the purple and green lines in the first half of time. The black line in
panel (a) is overlapped by the orange and blue lines in the second
half of time. The black line in (b) is overlapped by the blue line
from February to July.

only improve SIT along the sea ice edges. Figure 5a demon-
strates that DAsicPEcst offers some improvements in the
central Arctic as well. Improvements that resulted from a
more accurate Rsnw in the forecast period are more promi-
nent (Fig. 5b). For DAsitPEcst, SIT is improved almost ev-
erywhere in the Arctic, with slight degradations along the
ice edges (Fig. 5c). The improvements persist throughout the
forecast period (Fig. 5d).

5 Conclusions

We extend the functionality of DART/CICE to do PE through
the EAKF as well as updating the model states. One of the
key parameters determining sea ice surface albedo, Rsnw, is
estimated as an example in this study. Rsnw is updated using
the filter. We designed a series of OSSEs to demonstrate the
feasibility of PE in CICE5. Results show that Rsnw gradually
approaches the true value during the DA period (from April
to October 2005). Updating parameters with PE could fur-
ther improve the model state estimation but not prominently
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Figure 5. The relative differences of RMSEt of SIT between DA-
sicPEcst and DAsic for the (a) DA experiment period and (b) fore-
cast period, and between DAsitPEcst and DAsit for the (c) DA ex-
periment period and (d) forecast period. The differences of RMSEt

are divided by the RMSEt of DAsic and DAsit, respectively, to get
the relative differences.

in the DA period. During the forecast period, with a better
representation of the parameter, the PE experiments show
significant superiority over the state-only DA experiments,
both in SIC and SIT. The results in the forecast period indi-
cate that, by updating parameters as well as state variables,
assimilating SIC observations only is comparable to assimi-
lating SIT observations. We concluded that SIT is the most
important variable to be observed in Zhang et al. (2018), but
satellite observations of SIT have large uncertainties and only
cover a short time period. We could alternatively improve
model parameters by assimilating SIC observations, with the
ultimate goal of improving SIT. Results from the subset of
experiments treating Rsnw as a spatially varying parameter
suggest that the Rsnw biases are mostly reduced along the sea
ice edges but not as much in the central Arctic. We suggest
that varying Rsnw spatially is not effective when conducting
DA for the whole Arctic, but worth exploring when it comes
to regional studies, such as in the seasonal sea ice zones.
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https://doi.org/10.6084/m9.figshare.13670770 (Zhang et al.,
2021).
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