Articles | Volume 14, issue 2
https://doi.org/10.5194/tc-14-709-2020
https://doi.org/10.5194/tc-14-709-2020
Research article
 | 
02 Mar 2020
Research article |  | 02 Mar 2020

Towards a coupled model to investigate wave–sea ice interactions in the Arctic marginal ice zone

Guillaume Boutin, Camille Lique, Fabrice Ardhuin, Clément Rousset, Claude Talandier, Mickael Accensi, and Fanny Girard-Ardhuin

Related authors

Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Guillaume Boutin, and Einar Ólason
The Cryosphere, 18, 1791–1815, https://doi.org/10.5194/tc-18-1791-2024,https://doi.org/10.5194/tc-18-1791-2024, 2024
Short summary
Modelling the evolution of Arctic multiyear sea ice over 2000–2018
Heather Regan, Pierre Rampal, Einar Ólason, Guillaume Boutin, and Anton Korosov
The Cryosphere, 17, 1873–1893, https://doi.org/10.5194/tc-17-1873-2023,https://doi.org/10.5194/tc-17-1873-2023, 2023
Short summary
Arctic sea ice mass balance in a new coupled ice–ocean model using a brittle rheology framework
Guillaume Boutin, Einar Ólason, Pierre Rampal, Heather Regan, Camille Lique, Claude Talandier, Laurent Brodeau, and Robert Ricker
The Cryosphere, 17, 617–638, https://doi.org/10.5194/tc-17-617-2023,https://doi.org/10.5194/tc-17-617-2023, 2023
Short summary
Wave–sea-ice interactions in a brittle rheological framework
Guillaume Boutin, Timothy Williams, Pierre Rampal, Einar Olason, and Camille Lique
The Cryosphere, 15, 431–457, https://doi.org/10.5194/tc-15-431-2021,https://doi.org/10.5194/tc-15-431-2021, 2021
Short summary
Mesoscale eddies and submesoscale structures of Persian Gulf Water off the Omani coast in spring 2011
Pierre L'Hégaret, Xavier Carton, Stephanie Louazel, and Guillaume Boutin
Ocean Sci., 12, 687–701, https://doi.org/10.5194/os-12-687-2016,https://doi.org/10.5194/os-12-687-2016, 2016
Short summary

Related subject area

Discipline: Sea ice | Subject: Ocean Interactions
Two-dimensional numerical simulations of mixing under ice keels
Sam De Abreu, Rosalie M. Cormier, Mikhail G. Schee, Varvara E. Zemskova, Erica Rosenblum, and Nicolas Grisouard
The Cryosphere, 18, 3159–3176, https://doi.org/10.5194/tc-18-3159-2024,https://doi.org/10.5194/tc-18-3159-2024, 2024
Short summary
Seasonal and diurnal variability of sub-ice platelet layer thickness in McMurdo Sound from electromagnetic induction sounding
Gemma M. Brett, Greg H. Leonard, Wolfgang Rack, Christian Haas, Patricia J. Langhorne, Natalie J. Robinson, and Anne Irvin
The Cryosphere, 18, 3049–3066, https://doi.org/10.5194/tc-18-3049-2024,https://doi.org/10.5194/tc-18-3049-2024, 2024
Short summary
The role of upper-ocean heat content in the regional variability of Arctic sea ice at sub-seasonal timescales
Elena Bianco, Doroteaciro Iovino, Simona Masina, Stefano Materia, and Paolo Ruggieri
The Cryosphere, 18, 2357–2379, https://doi.org/10.5194/tc-18-2357-2024,https://doi.org/10.5194/tc-18-2357-2024, 2024
Short summary
A method for constructing directional surface wave spectra from ICESat-2 altimetry
Momme C. Hell and Christopher Horvat
The Cryosphere, 18, 341–361, https://doi.org/10.5194/tc-18-341-2024,https://doi.org/10.5194/tc-18-341-2024, 2024
Short summary
A model for the Arctic mixed layer circulation under a summertime lead: implications for the near-surface temperature maximum formation
Alberto Alvarez
The Cryosphere, 17, 3343–3361, https://doi.org/10.5194/tc-17-3343-2023,https://doi.org/10.5194/tc-17-3343-2023, 2023
Short summary

Cited articles

Aksenov, Y., Popova, E. E., Yool, A., Nurser, A. G., Williams, T. D., Bertino, L., and Bergh, J.: On the future navigability of Arctic sea routes: High-resolution projections of the Arctic Ocean and sea ice, Mar. Policy, 75, 300–317, 2017. a
Ardhuin, F., Sutherland, P., Doble, M., and Wadhams, P.: Ocean waves across the Arctic: attenuation due to dissipation dominates over scattering for periods longer than 19 s, Geophys. Res. Lett., 43, 5775–5783, https://doi.org/10.1002/2016GL068204, 2016. a
Ardhuin, F., Chapron, B., Collard, F., Smith, M., Stopa, J., Thomson, J., Doble, M., Wadhams, P., Blomquist, B., Persson, O., and Collins, III, C. O.: Measuring ocean waves in sea ice using SAR imagery: A quasi-deterministic approach evaluated with Sentinel-1 and in situ data, Remote Sens. Environ., 189, 211–222, 2017. a
Ardhuin, F., Boutin, G., Stopa, J., Girard-Ardhuin, F., Melsheimer, C., Thomson, J., Kohout, A., Doble, M., and Wadhams, P.: Wave Attenuation Through an Arctic Marginal Ice Zone on October 12, 2015: 2. Numerical modeling of Waves and Associated Ice Break-Up, J. Geophys. Res.-Oceans, 123, 5652–5668, https://doi.org/10.1002/2018JC013784, 2018. a, b, c, d, e
Asplin, M. G., Galley, R., Barber, D. G., and Prinsenberg, S.: Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms, J. Geophys. Res., 117, C06025, https://doi.org/10.1029/2011JC007221, 2012. a
Download
Short summary
We investigate the interactions of surface ocean waves with sea ice taking place at the interface between the compact sea ice cover and the open ocean. We use a newly developed coupling framework between a wave and an ocean–sea ice numerical model. Our results show how the push on sea ice exerted by waves changes the amount and the location of sea ice melting, with a strong impact on the ocean surface properties close to the ice edge.