Articles | Volume 14, issue 2
https://doi.org/10.5194/tc-14-549-2020
https://doi.org/10.5194/tc-14-549-2020
Research article
 | 
12 Feb 2020
Research article |  | 12 Feb 2020

Surface melt and the importance of water flow – an analysis based on high-resolution unmanned aerial vehicle (UAV) data for an Arctic glacier

Eleanor A. Bash and Brian J. Moorman

Related authors

Evolution of the firn pack of Kaskawulsh Glacier, Yukon: meltwater effects, densification, and the development of a perennial firn aquifer
Naomi E. Ochwat, Shawn J. Marshall, Brian J. Moorman, Alison S. Criscitiello, and Luke Copland
The Cryosphere, 15, 2021–2040, https://doi.org/10.5194/tc-15-2021-2021,https://doi.org/10.5194/tc-15-2021-2021, 2021
Short summary
Brief Communication: Low-cost, on-demand aerial photogrammetry for glaciological measurement
K. Whitehead, B. J. Moorman, and C. H. Hugenholtz
The Cryosphere, 7, 1879–1884, https://doi.org/10.5194/tc-7-1879-2013,https://doi.org/10.5194/tc-7-1879-2013, 2013

Related subject area

Discipline: Glaciers | Subject: Energy Balance Obs/Modelling
Surface heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps)
Dominik Amschwand, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024,https://doi.org/10.5194/tc-18-2103-2024, 2024
Short summary
Evaluation of reanalysis data and dynamical downscaling for surface energy balance modeling at mountain glaciers in western Canada
Christina Draeger, Valentina Radić, Rachel H. White, and Mekdes Ayalew Tessema
The Cryosphere, 18, 17–42, https://doi.org/10.5194/tc-18-17-2024,https://doi.org/10.5194/tc-18-17-2024, 2024
Short summary
Modeling of surface energy balance for Icelandic glaciers using remote-sensing albedo
Andri Gunnarsson, Sigurdur M. Gardarsson, and Finnur Pálsson
The Cryosphere, 17, 3955–3986, https://doi.org/10.5194/tc-17-3955-2023,https://doi.org/10.5194/tc-17-3955-2023, 2023
Short summary
Strategies for regional modeling of surface mass balance at the Monte Sarmiento Massif, Tierra del Fuego
Franziska Temme, David Farías-Barahona, Thorsten Seehaus, Ricardo Jaña, Jorge Arigony-Neto, Inti Gonzalez, Anselm Arndt, Tobias Sauter, Christoph Schneider, and Johannes J. Fürst
The Cryosphere, 17, 2343–2365, https://doi.org/10.5194/tc-17-2343-2023,https://doi.org/10.5194/tc-17-2343-2023, 2023
Short summary
Long-term firn and mass balance modelling for Abramov Glacier in the data-scarce Pamir Alay
Marlene Kronenberg, Ward van Pelt, Horst Machguth, Joel Fiddes, Martin Hoelzle, and Felix Pertziger
The Cryosphere, 16, 5001–5022, https://doi.org/10.5194/tc-16-5001-2022,https://doi.org/10.5194/tc-16-5001-2022, 2022
Short summary

Cited articles

Arnold, N. S., Willis, I. C., Sharp, M. J., Richard, K. S., and Lawson, W. J.: A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d'Arolla, Valais, Switzerland, J. Glaciol., 42, 77–89, 1996. a
Arnold, N. S., Rees, W. G., Hodson, A. J., and Kohler, J.: Topographic controls on the surface energy balance of a high Arctic valley glacier, J. Geophys. Res.-Earth, 111, F02011, https://doi.org/10.1029/2005JF000426, 2006. a, b
Avanzi, F., Bianchi, A., Cina, A., De Michele, C., Maschio, P., Pagliari, D., Passoni, D., Pinto, L., Piras, M., and Rossi, L.: Centimetric accuracy in snow depth using unmanned aerial system photogrammetry and a multistation, Remote Sensing, 10, 765, https://doi.org/10.3390/rs10050765, 2018. a
Bash, E., Moorman, B., and Gunther, A.: Detecting Short-Term Surface Melt on an Arctic Glacier Using UAV Surveys, Remote Sensing, 10, 1547, https://doi.org/10.3390/rs10101547, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Bash, E. A.: Supplementary data for “Surface melt and the importance of water flow – an analysis based on high-resolution unmanned aerial vehicle (UAV) data for an Arctic glacier”, Scholars Portal Dataverse, V1, https://doi.org/10.5683/SP2/S3V7G2, 2019. a
Download
Short summary
High-resolution measurements from unmanned aerial vehicle (UAV) imagery allowed for examination of glacier melt model performance in detail at Fountain Glacier. This work capitalized on distributed measurements at 10 cm resolution to look at the spatial distribution of model errors in the ablation zone. Although the model agreed with measurements on average, strong correlation was found with surface water. The results highlight the contribution of surface water flow to melt at this location.