Articles | Volume 14, issue 11
Research article
25 Nov 2020
Research article |  | 25 Nov 2020

Analyzing links between simulated Laptev Sea sea ice and atmospheric conditions over adjoining landmasses using causal-effect networks

Zoé Rehder, Anne Laura Niederdrenk, Lars Kaleschke, and Lars Kutzbach

Related authors

Simulated methane emissions from Arctic ponds are highly sensitive to warming
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855,,, 2023
Short summary
Ignoring carbon emissions from thermokarst ponds results in overestimation of tundra net carbon uptake
Lutz Beckebanze, Zoé Rehder, David Holl, Christian Wille, Charlotta Mirbach, and Lars Kutzbach
Biogeosciences, 19, 1225–1244,,, 2022
Short summary

Related subject area

Discipline: Sea ice | Subject: Climate Interactions
Forced and internal components of observed Arctic sea-ice changes
Jakob Simon Dörr, David B. Bonan, Marius Årthun, Lea Svendsen, and Robert C. J. Wills
The Cryosphere, 17, 4133–4153,,, 2023
Short summary
Network connectivity between the winter Arctic Oscillation and summer sea ice in CMIP6 models and observations
William Gregory, Julienne Stroeve, and Michel Tsamados
The Cryosphere, 16, 1653–1673,,, 2022
Short summary
The contribution of melt ponds to enhanced Arctic sea-ice melt during the Last Interglacial
Rachel Diamond, Louise C. Sime, David Schroeder, and Maria-Vittoria Guarino
The Cryosphere, 15, 5099–5114,,, 2021
Short summary
Clouds damp the radiative impacts of polar sea ice loss
Ramdane Alkama, Patrick C. Taylor, Lorea Garcia-San Martin, Herve Douville, Gregory Duveiller, Giovanni Forzieri, Didier Swingedouw, and Alessandro Cescatti
The Cryosphere, 14, 2673–2686,,, 2020
Short summary

Cited articles

Bareiss, J. and Görgen, K.: Spatial and temporal variability of sea ice in the Laptev Sea: Analyses and review of satellite passive-microwave data and model results, 1979 to 2002, Global Planet. Change, 48, 28–54,, 2005. a
Barton, N. P. and Veron, D. E.: Response of clouds and surface energy fluxes to changes in sea-ice cover over the Laptev Sea (Arctic Ocean), Clim. Res., 54, 69–84,, 2012. a
Bauer, M., Schröder, D., Heinemann, G., Willmes, S., and Ebner, L.: Quantifying polynya ice production in the Laptev Sea with the COSMO model, Polar Res., 32, 20922,, 2013. a
Bhatt, U. S., Alexander, M. A., Deser, C., Walsh, J. E., Miller, J. S., Timlin, M. S., Scott, J., and Tomas, R. A.: The Atmospheric Response to Realistic Reduced Summer Arctic Sea Ice Anomalies, Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, 180, 91–110,, 2008. a
Deser, C., Walsh, J. E., and Timlin, M. S.: Arctic sea ice variability in the context of recent atmospheric circulation trends, J. Climate, 13, 617–633,<0617:Asivit>2.0.Co;2, 2000. a, b
Short summary
To better understand the connection between sea ice and permafrost, we investigate how sea ice interacts with the atmosphere over the adjacent landmass in the Laptev Sea region using a climate model. Melt of sea ice in spring is mainly controlled by the atmosphere; in fall, feedback mechanisms are important. Throughout summer, lower-than-usual sea ice leads to more southward transport of heat and moisture, but these links from sea ice to the atmosphere over land are weak.