Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-4201-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-4201-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analyzing links between simulated Laptev Sea sea ice and atmospheric conditions over adjoining landmasses using causal-effect networks
Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, Germany
International Max Planck Research School on Earth System Modelling, Bundesstraße 53, 20146 Hamburg, Germany
formerly at: Universität Hamburg, Bundesstr. 53, 20146 Hamburg, Germany
Anne Laura Niederdrenk
Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, Germany
Lars Kaleschke
Alfred Wegener Institute, Klußmannstr. 3d, 27570 Bremerhaven, Germany
formerly at: Universität Hamburg, Bundesstr. 53, 20146 Hamburg, Germany
Lars Kutzbach
Universität Hamburg, Allende-Platz 2, 20146 Hamburg, Germany
Related authors
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Lutz Beckebanze, Zoé Rehder, David Holl, Christian Wille, Charlotta Mirbach, and Lars Kutzbach
Biogeosciences, 19, 1225–1244, https://doi.org/10.5194/bg-19-1225-2022, https://doi.org/10.5194/bg-19-1225-2022, 2022
Short summary
Short summary
Arctic permafrost landscapes feature many water bodies. In contrast to the terrestrial parts of the landscape, the water bodies release carbon to the atmosphere. We compare carbon dioxide and methane fluxes from small water bodies to the surrounding tundra and find not accounting for the carbon dioxide emissions leads to an overestimation of the tundra uptake by 11 %. Consequently, changes in hydrology and water body distribution may substantially impact the overall carbon budget of the Arctic.
Ole Zeising, Tore Hattermann, Lars Kaleschke, Sophie Berger, Reinhard Drews, M. Reza Ershadi, Tanja Fromm, Frank Pattyn, Daniel Steinhage, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2109, https://doi.org/10.5194/egusphere-2024-2109, 2024
Short summary
Short summary
Basal melting of ice shelves impacts the mass loss of the Antarctic Ice Sheet. This study focuses on the Ekström Ice Shelf in East Antarctica, using multi-year data from an autonomous radar system. Results show a surprising seasonal pattern of high melt rates in winter and spring. Sea-ice growth correlates with melt rates, indicating that in winter, dense water enhances plume activity and melt rates. Understanding these dynamics is crucial for improving future mass balance projections.
Lars Kaleschke, Xiangshan Tian-Kunze, Stefan Hendricks, and Robert Ricker
Earth Syst. Sci. Data, 16, 3149–3170, https://doi.org/10.5194/essd-16-3149-2024, https://doi.org/10.5194/essd-16-3149-2024, 2024
Short summary
Short summary
We describe a sea ice thickness dataset based on SMOS satellite measurements, initially designed for the Arctic but adapted for Antarctica. We validated it using limited Antarctic measurements. Our findings show promising results, with a small difference in thickness estimation and a strong correlation with validation data within the valid thickness range. However, improvements and synergies with other sensors are needed, especially for sea ice thicker than 1 m.
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024, https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Short summary
Leads (openings in sea ice cover) are created by sea ice dynamics. Because they are important for many processes in the Arctic winter climate, we aim to detect them with satellites. We present two new techniques to detect lead widths of a few hundred meters at high spatial resolution (700 m) and independent of clouds or sun illumination. We use the MOSAiC drift 2019–2020 in the Arctic for our case study and compare our new products to other existing lead products.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Haokui Xu, Brooke Medley, Leung Tsang, Joel T. Johnson, Kenneth C. Jezek, Marco Brogioni, and Lars Kaleschke
The Cryosphere, 17, 2793–2809, https://doi.org/10.5194/tc-17-2793-2023, https://doi.org/10.5194/tc-17-2793-2023, 2023
Short summary
Short summary
The density profile of polar ice sheets is a major unknown in estimating the mass loss using lidar tomography methods. In this paper, we show that combing the active radar data and passive radiometer data can provide an estimation of density properties using the new model we implemented in this paper. The new model includes the short and long timescale variations in the firn and also the refrozen layers which are not included in the previous modeling work.
Marco Brogioni, Mark J. Andrews, Stefano Urbini, Kenneth C. Jezek, Joel T. Johnson, Marion Leduc-Leballeur, Giovanni Macelloni, Stephen F. Ackley, Alexandra Bringer, Ludovic Brucker, Oguz Demir, Giacomo Fontanelli, Caglar Yardim, Lars Kaleschke, Francesco Montomoli, Leung Tsang, Silvia Becagli, and Massimo Frezzotti
The Cryosphere, 17, 255–278, https://doi.org/10.5194/tc-17-255-2023, https://doi.org/10.5194/tc-17-255-2023, 2023
Short summary
Short summary
In 2018 the first Antarctic campaign of UWBRAD was carried out. UWBRAD is a new radiometer able to collect microwave spectral signatures over 0.5–2 GHz, thus outperforming existing similar sensors. It allows us to probe thicker sea ice and ice sheet down to the bedrock. In this work we tried to assess the UWBRAD potentials for sea ice, glaciers, ice shelves and buried lakes. We also highlighted the wider range of information the spectral signature can provide to glaciological studies.
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Lutz Beckebanze, Zoé Rehder, David Holl, Christian Wille, Charlotta Mirbach, and Lars Kutzbach
Biogeosciences, 19, 1225–1244, https://doi.org/10.5194/bg-19-1225-2022, https://doi.org/10.5194/bg-19-1225-2022, 2022
Short summary
Short summary
Arctic permafrost landscapes feature many water bodies. In contrast to the terrestrial parts of the landscape, the water bodies release carbon to the atmosphere. We compare carbon dioxide and methane fluxes from small water bodies to the surrounding tundra and find not accounting for the carbon dioxide emissions leads to an overestimation of the tundra uptake by 11 %. Consequently, changes in hydrology and water body distribution may substantially impact the overall carbon budget of the Arctic.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Marek Muchow, Amelie U. Schmitt, and Lars Kaleschke
The Cryosphere, 15, 4527–4537, https://doi.org/10.5194/tc-15-4527-2021, https://doi.org/10.5194/tc-15-4527-2021, 2021
Short summary
Short summary
Linear-like openings in sea ice, also called leads, occur with widths from meters to kilometers. We use satellite images from Sentinel-2 with a resolution of 10 m to identify leads and measure their widths. With that we investigate the frequency of lead widths using two different statistical methods, since other studies have shown a dependency of heat exchange on the lead width. We are the first to address the sea-ice lead-width distribution in the Weddell Sea, Antarctica.
Verónica Pancotto, David Holl, Julio Escobar, María Florencia Castagnani, and Lars Kutzbach
Biogeosciences, 18, 4817–4839, https://doi.org/10.5194/bg-18-4817-2021, https://doi.org/10.5194/bg-18-4817-2021, 2021
Short summary
Short summary
We investigated the response of a wetland plant community to elevated temperature conditions in a cushion bog on Tierra del Fuego, Argentina. We measured carbon dioxide fluxes at experimentally warmed plots and at control plots. Warmed plant communities sequestered between 55 % and 85 % less carbon dioxide than untreated control cushions over the main growing season. Our results suggest that even moderate future warming could decrease the carbon sink function of austral cushion bogs.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Thomas Krumpen, Florent Birrien, Frank Kauker, Thomas Rackow, Luisa von Albedyll, Michael Angelopoulos, H. Jakob Belter, Vladimir Bessonov, Ellen Damm, Klaus Dethloff, Jari Haapala, Christian Haas, Carolynn Harris, Stefan Hendricks, Jens Hoelemann, Mario Hoppmann, Lars Kaleschke, Michael Karcher, Nikolai Kolabutin, Ruibo Lei, Josefine Lenz, Anne Morgenstern, Marcel Nicolaus, Uwe Nixdorf, Tomash Petrovsky, Benjamin Rabe, Lasse Rabenstein, Markus Rex, Robert Ricker, Jan Rohde, Egor Shimanchuk, Suman Singha, Vasily Smolyanitsky, Vladimir Sokolov, Tim Stanton, Anna Timofeeva, Michel Tsamados, and Daniel Watkins
The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020, https://doi.org/10.5194/tc-14-2173-2020, 2020
Short summary
Short summary
In October 2019 the research vessel Polarstern was moored to an ice floe in order to travel with it on the 1-year-long MOSAiC journey through the Arctic. Here we provide historical context of the floe's evolution and initial state for upcoming studies. We show that the ice encountered on site was exceptionally thin and was formed on the shallow Siberian shelf. The analyses presented provide the initial state for the analysis and interpretation of upcoming biogeochemical and ecological studies.
David Holl, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences, 17, 2853–2874, https://doi.org/10.5194/bg-17-2853-2020, https://doi.org/10.5194/bg-17-2853-2020, 2020
Short summary
Short summary
We measured greenhouse gas (GHG) fluxes at a bog site in northwestern Germany that has been heavily degraded by peat mining. During the 2-year investigation period, half of the area was still being mined, whereas the remaining half had been rewetted shortly before. We could therefore estimate the impact of rewetting on GHG flux dynamics. Rewetting had a considerable effect on the annual GHG balance and led to increased (up to 84 %) methane and decreased (up to 40 %) carbon dioxide release.
Maciej Miernecki, Lars Kaleschke, Nina Maaß, Stefan Hendricks, and Sten Schmidl Søbjærg
The Cryosphere, 14, 461–476, https://doi.org/10.5194/tc-14-461-2020, https://doi.org/10.5194/tc-14-461-2020, 2020
David Holl, Verónica Pancotto, Adrian Heger, Sergio Jose Camargo, and Lars Kutzbach
Biogeosciences, 16, 3397–3423, https://doi.org/10.5194/bg-16-3397-2019, https://doi.org/10.5194/bg-16-3397-2019, 2019
Short summary
Short summary
We present 2 years of eddy covariance carbon dioxide flux data from two Southern Hemisphere peatlands on Tierra del Fuego. One of the investigated sites is a type of bog exclusive to the Southern Hemisphere, which is dominated by vascular, cushion-forming plants and is particularly understudied. One result of this study is that these cushion bogs apparently are highly productive in comparison to Northern and Southern Hemisphere moss-dominated bogs.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Norman Rößger, Christian Wille, David Holl, Mathias Göckede, and Lars Kutzbach
Biogeosciences, 16, 2591–2615, https://doi.org/10.5194/bg-16-2591-2019, https://doi.org/10.5194/bg-16-2591-2019, 2019
Tim Eckhardt, Christian Knoblauch, Lars Kutzbach, David Holl, Gillian Simpson, Evgeny Abakumov, and Eva-Maria Pfeiffer
Biogeosciences, 16, 1543–1562, https://doi.org/10.5194/bg-16-1543-2019, https://doi.org/10.5194/bg-16-1543-2019, 2019
Short summary
Short summary
We quantified the contribution of individual components governing the net ecosystem exchange of CO2 and how these fluxes respond to environmental changes in a drained and water-saturated site in the polygonal tundra of northeast Siberia. This work finds both sites as a sink for atmospheric CO2 during the growing season, but sink strengths varied between the sites. Furthermore, it was shown that soil hydrological conditions were one of the key drivers for differing CO2 fluxes between the sites.
Julia Boike, Jan Nitzbon, Katharina Anders, Mikhail Grigoriev, Dmitry Bolshiyanov, Moritz Langer, Stephan Lange, Niko Bornemann, Anne Morgenstern, Peter Schreiber, Christian Wille, Sarah Chadburn, Isabelle Gouttevin, Eleanor Burke, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 261–299, https://doi.org/10.5194/essd-11-261-2019, https://doi.org/10.5194/essd-11-261-2019, 2019
Short summary
Short summary
Long-term observational data are available from the Samoylov research site in northern Siberia, where meteorological parameters, energy balance, and subsurface observations have been recorded since 1998. This paper presents the temporal data set produced between 2002 and 2017, explaining the instrumentation, calibration, processing, and data quality control. Furthermore, we present a merged dataset of the parameters, which were measured from 1998 onwards.
David Holl, Christian Wille, Torsten Sachs, Peter Schreiber, Benjamin R. K. Runkle, Lutz Beckebanze, Moritz Langer, Julia Boike, Eva-Maria Pfeiffer, Irina Fedorova, Dimitry Y. Bolshianov, Mikhail N. Grigoriev, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 221–240, https://doi.org/10.5194/essd-11-221-2019, https://doi.org/10.5194/essd-11-221-2019, 2019
Short summary
Short summary
We present a multi-annual time series of land–atmosphere carbon dioxide fluxes measured in situ with the eddy covariance technique in the Siberian Arctic. In arctic permafrost regions, climate–carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have been made in recent years. Up to now, the available database of in situ measurements from the Arctic was biased towards Alaska and records from the Eurasian Arctic were scarce.
Thomas Kaminski, Frank Kauker, Leif Toudal Pedersen, Michael Voßbeck, Helmuth Haak, Laura Niederdrenk, Stefan Hendricks, Robert Ricker, Michael Karcher, Hajo Eicken, and Ola Gråbak
The Cryosphere, 12, 2569–2594, https://doi.org/10.5194/tc-12-2569-2018, https://doi.org/10.5194/tc-12-2569-2018, 2018
Short summary
Short summary
We present mathematically rigorous assessments of the observation impact (added value) of remote-sensing products and in terms of the uncertainty reduction in a 4-week forecast of sea ice volume and snow volume for three regions along the Northern Sea Route by a coupled model of the sea-ice–ocean system. We quantify the difference in impact between rawer (freeboard) and higher-level (sea ice thickness) products, and the impact of adding a snow depth product.
Steffen Tietsche, Magdalena Alonso-Balmaseda, Patricia Rosnay, Hao Zuo, Xiangshan Tian-Kunze, and Lars Kaleschke
The Cryosphere, 12, 2051–2072, https://doi.org/10.5194/tc-12-2051-2018, https://doi.org/10.5194/tc-12-2051-2018, 2018
Short summary
Short summary
We compare Arctic sea-ice thickness from L-band microwave satellite observations and an ocean–sea ice reanalysis. There is good agreement for some regions and times but systematic discrepancy in others. Errors in both the reanalysis and observational products contribute to these discrepancies. Thus, we recommend proceeding with caution when using these observations for model validation or data assimilation. At the same time we emphasise their unique value for improving sea-ice forecast models.
Friedrich Richter, Matthias Drusch, Lars Kaleschke, Nina Maaß, Xiangshan Tian-Kunze, and Susanne Mecklenburg
The Cryosphere, 12, 921–933, https://doi.org/10.5194/tc-12-921-2018, https://doi.org/10.5194/tc-12-921-2018, 2018
Short summary
Short summary
L-band (1.4 GHz) brightness temperatures from ESA's Soil Moisture and Ocean Salinity SMOS mission have been used to derive thin sea ice thickness. However, the brightness temperature measurements can potentially be assimilated directly in forecasting systems reducing the data latency and providing a more consistent first guess. We studied the forward (observation) operator that translates geophysical sea ice parameters from the ECMWF Ocean ReAnalysis Pilot 5 (ORAP5) into brightness temperatures.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Gerhard Krinner, Shushi Peng, Mika Aurela, Christian Bernhofer, Christian Brümmer, Syndonia Bret-Harte, Housen Chu, Jiquan Chen, Ankur R. Desai, Jiří Dušek, Eugénie S. Euskirchen, Krzysztof Fortuniak, Lawrence B. Flanagan, Thomas Friborg, Mateusz Grygoruk, Sébastien Gogo, Thomas Grünwald, Birger U. Hansen, David Holl, Elyn Humphreys, Miriam Hurkuck, Gerard Kiely, Janina Klatt, Lars Kutzbach, Chloé Largeron, Fatima Laggoun-Défarge, Magnus Lund, Peter M. Lafleur, Xuefei Li, Ivan Mammarella, Lutz Merbold, Mats B. Nilsson, Janusz Olejnik, Mikaell Ottosson-Löfvenius, Walter Oechel, Frans-Jan W. Parmentier, Matthias Peichl, Norbert Pirk, Olli Peltola, Włodzimierz Pawlak, Daniel Rasse, Janne Rinne, Gaius Shaver, Hans Peter Schmid, Matteo Sottocornola, Rainer Steinbrecher, Torsten Sachs, Marek Urbaniak, Donatella Zona, and Klaudia Ziemblinska
Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, https://doi.org/10.5194/gmd-11-497-2018, 2018
Short summary
Short summary
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We implemented peatland hydrological and carbon accumulation processes into the ORCHIDEE land surface model. The model was evaluated against EC measurements from 30 northern peatland sites. The model generally well reproduced the spatial gradient and temporal variations in GPP and NEE at these sites. Water table depth was not well predicted but had only small influence on simulated NEE.
Sarah E. Chadburn, Gerhard Krinner, Philipp Porada, Annett Bartsch, Christian Beer, Luca Belelli Marchesini, Julia Boike, Altug Ekici, Bo Elberling, Thomas Friborg, Gustaf Hugelius, Margareta Johansson, Peter Kuhry, Lars Kutzbach, Moritz Langer, Magnus Lund, Frans-Jan W. Parmentier, Shushi Peng, Ko Van Huissteden, Tao Wang, Sebastian Westermann, Dan Zhu, and Eleanor J. Burke
Biogeosciences, 14, 5143–5169, https://doi.org/10.5194/bg-14-5143-2017, https://doi.org/10.5194/bg-14-5143-2017, 2017
Short summary
Short summary
Earth system models (ESMs) are our main tools for understanding future climate. The Arctic is important for the future carbon cycle, particularly due to the large carbon stocks in permafrost. We evaluated the performance of the land component of three major ESMs at Arctic tundra sites, focusing on the fluxes and stocks of carbon.
We show that the next steps for model improvement are to better represent vegetation dynamics, to include mosses and to improve below-ground carbon cycle processes.
Robert Ricker, Stefan Hendricks, Lars Kaleschke, Xiangshan Tian-Kunze, Jennifer King, and Christian Haas
The Cryosphere, 11, 1607–1623, https://doi.org/10.5194/tc-11-1607-2017, https://doi.org/10.5194/tc-11-1607-2017, 2017
Short summary
Short summary
We developed the first merging of CryoSat-2 and SMOS sea-ice thickness retrievals. ESA’s Earth Explorer SMOS satellite can detect thin sea ice, whereas its companion CryoSat-2, designed to observe thicker perennial sea ice, lacks sensitivity. Using these satellite missions together completes the picture of the changing Arctic sea ice and provides a more accurate and comprehensive view on the actual state of Arctic sea-ice thickness.
Jiping Xie, François Counillon, Laurent Bertino, Xiangshan Tian-Kunze, and Lars Kaleschke
The Cryosphere, 10, 2745–2761, https://doi.org/10.5194/tc-10-2745-2016, https://doi.org/10.5194/tc-10-2745-2016, 2016
Short summary
Short summary
As a potentially operational daily product, the SMOS-Ice can improve the statements of sea ice thickness and concentration. In this study, focusing on the SMOS-Ice data assimilated into the TOPAZ system, the quantitative evaluation for the impacts and the concerned comparison with the present observation system are valuable to understand the further improvement of the accuracy of operational ocean forecasting system.
Fabian Beermann, Moritz Langer, Sebastian Wetterich, Jens Strauss, Julia Boike, Claudia Fiencke, Lutz Schirrmeister, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-117, https://doi.org/10.5194/bg-2016-117, 2016
Revised manuscript not accepted
Short summary
Short summary
This paper aims to quantify pools of inorganic nitrogen in permafrost soils of arctic Siberia and to estimate annual release rates of this nitrogen due to permafrost thaw. We report for the first time stores of inorganic nitrogen in Siberian permafrost soils. These nitrogen stores are important as permafrost thaw can mobilize substantial amounts of nitrogen, potentially changing the nutrient balance of these soils and representing a significant non-carbon permafrost climate feedback.
A.-M. Blechschmidt, A. Richter, J. P. Burrows, L. Kaleschke, K. Strong, N. Theys, M. Weber, X. Zhao, and A. Zien
Atmos. Chem. Phys., 16, 1773–1788, https://doi.org/10.5194/acp-16-1773-2016, https://doi.org/10.5194/acp-16-1773-2016, 2016
Short summary
Short summary
A comprehensive case study of a comma-shaped bromine monoxide plume in the Arctic, which was transported by a polar cyclone and was observed by the GOME-2 satellite sensor over several days, is presented. By making combined use of different kinds of satellite data and numerical models, we demonstrate the important role of the frontal weather system in favouring the bromine activation cycle and blowing snow production, which may have acted as a bromine source during the bromine explosion event.
A. Wernecke and L. Kaleschke
The Cryosphere, 9, 1955–1968, https://doi.org/10.5194/tc-9-1955-2015, https://doi.org/10.5194/tc-9-1955-2015, 2015
Short summary
Short summary
Leads in Arctic sea ice have a dominant effect on the exchange between the ocean and the atmosphere. Visual MODIS scenes are used to validate and improve the detection of leads from altimeter measurements of the satellite CryoSat-2. The rarely used maximum power of the returning signal shows the best classification properties. Lead area fraction and width distribution estimates based on CryoSat-2 complement other studies and deepen our understanding of lead characteristics.
F. Cresto Aleina, B. R. K. Runkle, T. Kleinen, L. Kutzbach, J. Schneider, and V. Brovkin
Biogeosciences, 12, 5689–5704, https://doi.org/10.5194/bg-12-5689-2015, https://doi.org/10.5194/bg-12-5689-2015, 2015
Short summary
Short summary
We developed a process-based model for peatland micro-topography and hydrology, the Hummock-Hollow (HH) model, which explicitly represents small-scale surface elevation changes. By coupling the HH model with a model for soil methane processes, we are able to model the effects of micro-topography on hydrology and methane emissions in a typical boreal peatland. We also identify potential biases that models without a micro-topographic representation can introduce in large-scale models.
M. Vanselow-Algan, S. R. Schmidt, M. Greven, C. Fiencke, L. Kutzbach, and E.-M. Pfeiffer
Biogeosciences, 12, 4361–4371, https://doi.org/10.5194/bg-12-4361-2015, https://doi.org/10.5194/bg-12-4361-2015, 2015
X. Tian-Kunze, L. Kaleschke, N. Maaß, M. Mäkynen, N. Serra, M. Drusch, and T. Krumpen
The Cryosphere, 8, 997–1018, https://doi.org/10.5194/tc-8-997-2014, https://doi.org/10.5194/tc-8-997-2014, 2014
M. Huntemann, G. Heygster, L. Kaleschke, T. Krumpen, M. Mäkynen, and M. Drusch
The Cryosphere, 8, 439–451, https://doi.org/10.5194/tc-8-439-2014, https://doi.org/10.5194/tc-8-439-2014, 2014
N. Maaß, L. Kaleschke, X. Tian-Kunze, and M. Drusch
The Cryosphere, 7, 1971–1989, https://doi.org/10.5194/tc-7-1971-2013, https://doi.org/10.5194/tc-7-1971-2013, 2013
A. Tetzlaff, L. Kaleschke, C. Lüpkes, F. Ament, and T. Vihma
The Cryosphere, 7, 153–166, https://doi.org/10.5194/tc-7-153-2013, https://doi.org/10.5194/tc-7-153-2013, 2013
Related subject area
Discipline: Sea ice | Subject: Climate Interactions
Forced and internal components of observed Arctic sea-ice changes
Network connectivity between the winter Arctic Oscillation and summer sea ice in CMIP6 models and observations
The contribution of melt ponds to enhanced Arctic sea-ice melt during the Last Interglacial
Clouds damp the radiative impacts of polar sea ice loss
Jakob Simon Dörr, David B. Bonan, Marius Årthun, Lea Svendsen, and Robert C. J. Wills
The Cryosphere, 17, 4133–4153, https://doi.org/10.5194/tc-17-4133-2023, https://doi.org/10.5194/tc-17-4133-2023, 2023
Short summary
Short summary
The Arctic sea-ice cover is retreating due to climate change, but this retreat is influenced by natural (internal) variability in the climate system. We use a new statistical method to investigate how much internal variability has affected trends in the summer and winter Arctic sea-ice cover using observations since 1979. Our results suggest that the impact of internal variability on sea-ice retreat might be lower than what climate models have estimated.
William Gregory, Julienne Stroeve, and Michel Tsamados
The Cryosphere, 16, 1653–1673, https://doi.org/10.5194/tc-16-1653-2022, https://doi.org/10.5194/tc-16-1653-2022, 2022
Short summary
Short summary
This research was conducted to better understand how coupled climate models simulate one of the large-scale interactions between the atmosphere and Arctic sea ice that we see in observational data, the accurate representation of which is important for producing reliable forecasts of Arctic sea ice on seasonal to inter-annual timescales. With network theory, this work shows that models do not reflect this interaction well on average, which is likely due to regional biases in sea ice thickness.
Rachel Diamond, Louise C. Sime, David Schroeder, and Maria-Vittoria Guarino
The Cryosphere, 15, 5099–5114, https://doi.org/10.5194/tc-15-5099-2021, https://doi.org/10.5194/tc-15-5099-2021, 2021
Short summary
Short summary
The Hadley Centre Global Environment Model version 3 (HadGEM3) is the first coupled climate model to simulate an ice-free summer Arctic during the Last Interglacial (LIG), 127 000 years ago, and yields accurate Arctic surface temperatures. We investigate the causes and impacts of this extreme simulated ice loss and, in particular, the role of melt ponds.
Ramdane Alkama, Patrick C. Taylor, Lorea Garcia-San Martin, Herve Douville, Gregory Duveiller, Giovanni Forzieri, Didier Swingedouw, and Alessandro Cescatti
The Cryosphere, 14, 2673–2686, https://doi.org/10.5194/tc-14-2673-2020, https://doi.org/10.5194/tc-14-2673-2020, 2020
Short summary
Short summary
The amount of solar energy absorbed by Earth is believed to strongly depend on clouds. Here, we investigate this relationship using satellite data and 32 climate models, showing that this relationship holds everywhere except over polar seas, where an increased reflection by clouds corresponds to an increase in absorbed solar radiation at the surface. This interplay between clouds and sea ice reduces by half the increase of net radiation at the surface that follows the sea ice retreat.
Cited articles
Bareiss, J. and Görgen, K.: Spatial and temporal variability of sea ice in
the Laptev Sea: Analyses and review of satellite passive-microwave data and
model results, 1979 to 2002, Global Planet. Change, 48, 28–54,
https://doi.org/10.1016/j.gloplacha.2004.12.004, 2005. a
Barton, N. P. and Veron, D. E.: Response of clouds and surface energy fluxes to
changes in sea-ice cover over the Laptev Sea (Arctic Ocean), Clim.
Res., 54, 69–84, https://doi.org/10.3354/cr01101, 2012. a
Bauer, M., Schröder, D., Heinemann, G., Willmes, S., and Ebner, L.:
Quantifying polynya ice production in the Laptev Sea with the COSMO model,
Polar Res., 32, 20922, https://doi.org/10.3402/polar.v32i0.20922, 2013. a
Bhatt, U. S., Alexander, M. A., Deser, C., Walsh, J. E., Miller, J. S., Timlin,
M. S., Scott, J., and Tomas, R. A.: The Atmospheric Response to Realistic
Reduced Summer Arctic Sea Ice Anomalies, Arctic Sea Ice Decline:
Observations, Projections, Mechanisms, and Implications, 180, 91–110,
https://doi.org/10.1029/180gm08, 2008. a
Deser, C., Walsh, J. E., and Timlin, M. S.: Arctic sea ice variability in the
context of recent atmospheric circulation trends, J. Climate, 13,
617–633, https://doi.org/10.1175/1520-0442(2000)013<0617:Asivit>2.0.Co;2, 2000. a, b
Fetterer, F., Knowles, K., Meier, W., Savoie, M., and Windnagel, A.: Sea ice
index, version 2., Boulder, CO: National Snow and Ice Data Center NSIDC, 119,
https://doi.org/10.7265/N5736NV7, 2016. a
Francis, J. A. and Hunter, E.: Changes in the fabric of the Arctic's greenhouse
blanket, Environ. Res. Lett., 2, 045011,
https://doi.org/10.1088/1748-9326/2/4/045011, 2007. a
Granger, C. W. J.: Investigating causal relations by econometric models and
cross-spectral methods, Econometrica: journal of the Econometric Society, 37,
424–438, https://doi.org/10.2307/1912791, 1969. a
Graversen, R. G., Langen, P. L., and Mauritsen, T.: Polar Amplification in
CCSM4: Contributions from the Lapse Rate and Surface Albedo Feedbacks,
J. Climate, 27, 4433–4450, https://doi.org/10.1175/Jcli-D-13-00551.1, 2014. a
Haas, C. and Eicken, H.: Interannual variability of summer sea ice thickness in
the Siberian and central Arctic under different atmospheric circulation
regimes, J. Geophys. Res.-Oceans, 106, 4449–4462,
https://doi.org/10.1029/1999jc000088, 2001. a, b
Huntington, T. G.: Evidence for intensification of the global water cycle:
Review and synthesis, J. Hydrol., 319, 83–95,
https://doi.org/10.1016/j.jhydrol.2005.07.003, 2006. a
Jacob, D.: A note to the simulation of the annual and inter-annual variability
of the water budget over the Baltic Sea drainage basin, Meteorol.
Atmos. Phys., 77, 61–73, https://doi.org/10.1007/s007030170017, 2001. a
Jacob, D. and Podzun, R.: Sensitivity studies with the regional climate model
REMO, Meteorol. Atmos. Phys., 63, 119–129, https://doi.org/10.1007/Bf01025368, 1997. a
Jaiser, R., Dethloff, K., Handorf, D., Rinke, A., and Cohen, J.: Impact of sea
ice cover changes on the Northern Hemisphere atmospheric winter circulation,
Tellus Series A, 64, 11595,
https://doi.org/10.3402/tellusa.v64i0.11595, 2012. a, b, c
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D.,
Mikolajewicz, U., Notz, D., and von Storch, J. S.: Characteristics of the
ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean
component of the MPI-Earth system model, J. Adv. Model.
Earth Syst., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013. a
Kim, K.-Y., Hamlington, B. D., Na, H., and Kim, J.: Mechanism of seasonal Arctic sea ice evolution and Arctic amplification, The Cryosphere, 10, 2191–2202, https://doi.org/10.5194/tc-10-2191-2016, 2016. a
Kretschmer, M., Coumou, D., Donges, J. F., and Runge, J.: Using Causal Effect
Networks to Analyze Different Arctic Drivers of Midlatitude Winter
Circulation, J. Climate, 29, 4069–4081,
https://doi.org/10.1175/Jcli-D-15-0654.1, 2016. a
Krumpen, T., Janout, M., Hodges, K. I., Gerdes, R., Girard-Ardhuin, F., Hölemann, J. A., and Willmes, S.: Variability and trends in Laptev Sea ice outflow between 1992–2011, The Cryosphere, 7, 349–363, https://doi.org/10.5194/tc-7-349-2013, 2013. a
Lawrence, D. M., Slater, A. G., Tomas, R. A., Holland, M. M., and Deser, C.:
Accelerated Arctic land warming and permafrost degradation during rapid sea
ice loss, Geophys. Res. Lett., 35, L11506, https://doi.org/10.1029/2008gl033985, 2008. a, b
Lee, S., Gong, T., Feldstein, S. B., Screen, J. A., and Simmonds, I.:
Revisiting the Cause of the 1989–2009 Arctic Surface Warming Using the
Surface Energy Budget: Downward Infrared Radiation Dominates the Surface
Fluxes, Geophys. Res. Lett., 44, 10654–10661,
https://doi.org/10.1002/2017GL075375, 2017. a
Li, F. and Wang, H. J.: Autumn Sea Ice Cover, Winter Northern Hemisphere
Annular Mode, and Winter Precipitation in Eurasia, J. Climate, 26,
3968–3981, https://doi.org/10.1175/Jcli-D-12-00380.1, 2013. a
Li, M., Luo, D., Simmonds, I., Dai, A., Zhong, L., and Yao, Y.: Anchoring of
atmospheric teleconnection patterns by Arctic sea ice loss and its link to
winter cold anomalies in East Asia, Int. J. Climatol., 1–12,
https://doi.org/10.1002/joc.6637, 2020. a
Luo, B., Luo, D., Wu, L., Zhong, L., and Simmonds, I.: Atmospheric circulation
patterns which promote winter Arctic sea ice decline, Environ. Res.
Lett., 12, 054017, https://doi.org/10.1088/1748-9326/aa69d0, 2017. a
Luo, B., Wu, L., Luo, D., Dai, A., and Simmonds, I.: The winter
midlatitude-Arctic interaction: effects of North Atlantic SST and
high-latitude blocking on Arctic sea ice and Eurasian cooling, Clim.
Dynam., 52, 2981–3004, https://doi.org/10.1007/s00382-018-4301-5,
2019a. a
Luo, D., Chen, X., Overland, J., Simmonds, I., Wu, Y., and Zhang, P.: Weakened
Potential Vorticity Barrier Linked to Recent Winter Arctic Sea Ice Loss and
Midlatitude Cold Extremes, J. Climate, 32, 4235–4261,
https://doi.org/10.1175/JCLI-D-18-0449.1, 2019b. a
Macias-Fauria, M., Karlsen, S. R., and Forbes, B. C.: Disentangling the
coupling between sea ice and tundra productivity in Svalbard, Sci.
Rep., 7, 1–10, https://doi.org/10.1038/s41598-017-06218-8, 2017. a
Niederdrenk, A. L., Sein, D. V., and Mikolajewicz, U.: Interannual variability
of the Arctic freshwater cycle in the second half of the twentieth century in
a regionally coupled climate model, Clim. Dynam., 47, 3883–3900,
https://doi.org/10.1007/s00382-016-3047-1, 2016. a, b
Niederdrenk, L. and Mikolajewicz, U.: Wechselwirkungen zwischen verschiedenen
Komponenten des arktischen Klimasystems (bm0899),
available at: http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=DKRZ_lta_899 (last access: 18 November 2020),
2014. a
Ogi, M., Rysgaard, S., and Barber, D. G.: The influence of winter and summer
atmospheric circulation on the variability of temperature and sea ice around
Greenland, Tellus Series A, 68, 14,
https://doi.org/10.3402/tellusa.v68.31971, 2016. a, b
Olonscheck, D., Mauritsen, T., and Notz, D.: Arctic sea-ice variability is
primarily driven by atmospheric temperature fluctuations, Nat. Geosci.,
12, 430–434, https://doi.org/10.1038/s41561-019-0363-1, 2019. a
Overland, J. E. and Wang, M. Y.: Large-scale atmospheric circulation changes
are associated with the recent loss of Arctic sea ice, Tellus Series A, 62, 1–9,
https://doi.org/10.1111/j.1600-0870.2009.00421.x, 2010. a
Overland, J. E., Francis, J. A., Hanna, E., and Wang, M. Y.: The recent shift
in early summer Arctic atmospheric circulation, Geophys. Res. Lett.,
39, L19804, https://doi.org/10.1029/2012gl053268, 2012. a, b, c
Parmentier, F. J. W., Christensen, T. R., Sorensen, L. L., Rysgaard, S.,
McGuire, A. D., Miller, P. A., and Walker, D. A.: The impact of lower sea-ice
extent on Arctic greenhouse-gas exchange, Nat. Clim. Change, 3, 195–202,
https://doi.org/10.1038/Nclimate1784, 2013. a
Parmentier, F. J. W., Zhang, W. X., Mi, Y. J., Zhu, X. D., van Huissteden, J.,
Hayes, D. J., Zhuang, Q. L., Christensen, T. R., and McGuire, A. D.: Rising
methane emissions from northern wetlands associated with sea ice decline,
Geophys. Res. Lett., 42, 7214–7222, https://doi.org/10.1002/2015GL065013,
2015. a, b
Pearl, J.: Causality: Models, reasoning and inference, Cambridge University
Press, Cambridge, United Kingdom, 2000. a
Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature
feedbacks in contemporary climate models, Nat. Geosci., 7, 181–184,
https://doi.org/10.1038/ngeo2071, 2014. a
Pithan, F., Medeiros, B., and Mauritsen, T.: Mixed-phase clouds cause climate
model biases in Arctic wintertime temperature inversions, Clim. Dynam.,
43, 289–303, https://doi.org/10.1007/s00382-013-1964-9, 2013. a
Post, E., Bhatt, U. S., Bitz, C. M., Brodie, J. F., Fulton, T. L., Hebblewhite,
M., Kerby, J., Kutz, S. J., Stirling, I., and Walker, D. A.: Ecological
consequences of sea-ice decline, Science, 341, 519–524,
https://doi.org/10.1126/science.1235225, 2013. a
Rigor, I. G., Wallace, J. M., and Colony, R. L.: Response of sea ice to the
Arctic oscillation, J. Climate, 15, 2648–2663,
https://doi.org/10.1175/1520-0442(2002)015<2648:Rositt>2.0.Co;2, 2002. a, b
Runge, J., Heitzig, J., Marwan, N., and Kurths, J.: Quantifying causal coupling
strength: A lag-specific measure for multivariate time series related to
transfer entropy, Phys. Rev. E, 86, 15,
https://doi.org/10.1103/PhysRevE.86.061121, 2012. a, b, c
Runge, J., Petoukhov, V., and Kurths, J.: Quantifying the Strength and Delay of
Climatic Interactions: The Ambiguities of Cross Correlation and a Novel
Measure Based on Graphical Models, J. Climate, 27, 720–739,
https://doi.org/10.1175/Jcli-D-13-00159.1, 2014. a, b, c
Runge, J., Petoukhov, V., Donges, J. F., Hlinka, J., Jajcay, N., Vejmelka, M.,
Hartman, D., Marwan, N., Palus, M., and Kurths, J.: Identifying causal
gateways and mediators in complex spatio-temporal systems, Nat.
Commun., 6, 8502, https://doi.org/10.1038/ncomms9502, 2015. a, b
Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D.:
Detecting and quantifying causal associations in large nonlinear time series
datasets, Sci. Adv., 5, eaau4996, https://doi.org/10.1126/sciadv.aau4996, 2019. a
Samarasinghe, S. M., McGraw, M. C., Barnes, E. A., and Ebert-Uphoff, I.: A
study of links between the Arctic and the midlatitude jet stream using
Granger and Pearl causality, Environmetrics, 30, e2540,
https://doi.org/10.1002/env.2540, 2019. a
Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in
recent Arctic temperature amplification, Nature, 464, 1334–1337,
https://doi.org/10.1038/nature09051, 2010. a, b
Screen, J. A., Simmonds, I., and Keay, K.: Dramatic interannual changes of
perennial Arctic sea ice linked to abnormal summer storm activity, J.
Geophys. Res., 116, D15105, https://doi.org/10.1029/2011JD015847, 2011. a
Screen, J. A., Deser, C., and Simmonds, I.: Local and remote controls on
observed Arctic warming, Geophys. Res. Lett., 39, L10709,
https://doi.org/10.1029/2012gl051598, 2012. a, b
Screen, J. A., Bracegirdle, T. J., and Simmonds, I.: Polar climate change as
manifest in atmospheric circulation, Curr. Clim. Change Rep., 4,
383–395, https://doi.org/10.1007/s40641-018-0111-4, 2018. a
Sein, D. V., Mikolajewicz, U., Groger, M., Fast, I., Cabos, W., Pinto, J. G.,
Hagemann, S., Semmler, T., Izquierdo, A., and Jacob, D.: Regionally coupled
atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1. Description and
validation, J. Adv. Model. Earth Syst., 7, 268–304,
https://doi.org/10.1002/2014ms000357, 2015. a
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification:
A research synthesis, Global Planet. Change, 77, 85–96,
https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011. a, b, c
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., and Holland, M. M.: The emergence of surface-based Arctic amplification, The Cryosphere, 3, 11–19, https://doi.org/10.5194/tc-3-11-2009, 2009. a, b, c, d
Shaver, G. R., Canadell, J., Chapin, F. S., Gurevitch, J., Harte, J., Henry,
G., Ineson, P., Jonasson, S., Melillo, J., Pitelka, L., and Rustad, L.:
Global warming and terrestrial ecosystems: A conceptual framework for
analysis, Bioscience, 50, 871–882,
https://doi.org/10.1641/0006-3568(2000)050[0871:Gwatea]2.0.Co;2, 2000. a
Simmonds, I.: Comparing and contrasting the behaviour of Arctic and
Antarcticsea ice over the 35 year period 1979–2013, Ann. Glaciol.,
56, 18–28, https://doi.org/10.3189/2015AoG69A909, 2015. a
Simmonds, I. and Rudeva, I.: The great Arctic cyclone of August 2012,
Geophys. Res. Lett., 39, L23709, https://doi.org/10.1029/2012GL054259, 2012.
a
Simmonds, I. and Rudeva, I.: A comparison of tracking methods for extreme
cyclones in the Arctic basin, Tellus A,
66, 1, https://doi.org/10.3402/tellusa.v66.25252, 2014. a
Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman, D.: Causation,
prediction, and search, MIT press, Cambridge, Massachusetts, United States, 2000. a
Stocker, T. F., Qin, D., Plattner, G. K., Alexander, L. V., Allen, S. K.,
Bindoff, N. L., Bréon, F. M., Church, J. A., Cubasch, U., Emori, S.,
Forster, P., Friedlingstein, P., Gillett, N., Gregory, J. M., Hartmann,
D. L., Jansen, E., Kirtman, B., Knutti, R., Kumar, K. K., Lemke, P.,
Marotzke, J., Masson-Delmotte, V., Meehl, G. A., Mokhov, I. I., Piao, S.,
Ramaswamy, V., Randall, D., Rhein, M., Rojas, M., Sabine, C., Shindell, D.,
Talley, L. D., Vaughan, D. G., and Xie, S. P.: Technical Summary, pp.
33–115, Cambridge University Press, Cambridge, United Kingdom, 2013. a
Titchner, H. A. and Rayner, N. A.: The Met Office Hadley Centre sea ice and sea
surface temperature data set, version 2:1. Sea ice concentrations, J.
Geophys. Res.-Atmos., 119, 2864–2889,
https://doi.org/10.1002/2013JD020316, 2014. a
Wang, J., Zhang, J. L., Watanabe, E., Ikeda, M., Mizobata, K., Walsh, J. E.,
Bai, X. Z., and Wu, B. Y.: Is the Dipole Anomaly a major driver to record
lows in Arctic summer sea ice extent?, Geophys. Res. Lett., 36, 5,
https://doi.org/10.1029/2008GL036706, 2009. a, b, c, d
Yang, W. C. and Magnusdottir, G.: Springtime extreme moisture transport into
the Arctic and its impact on sea ice concentration, J. Geophys.
Res.-Atmos., 122, 5316–5329, https://doi.org/10.1002/2016JD026324, 2017. a, b
Yao, Y., Luo, D., Dai, A., and Simmonds, I.: Increased quasi stationarity and
persistence of winter Ural blocking and Eurasian extreme cold events in
response to Arctic warming. Part I: Insights from observational analyses,
J. Climate, 30, 3549–3568, https://doi.org/10.1175/Jcli-D-16-0261.1, 2017. a
Short summary
To better understand the connection between sea ice and permafrost, we investigate how sea ice interacts with the atmosphere over the adjacent landmass in the Laptev Sea region using a climate model. Melt of sea ice in spring is mainly controlled by the atmosphere; in fall, feedback mechanisms are important. Throughout summer, lower-than-usual sea ice leads to more southward transport of heat and moisture, but these links from sea ice to the atmosphere over land are weak.
To better understand the connection between sea ice and permafrost, we investigate how sea ice...