Research article
14 Nov 2020
Research article | 14 Nov 2020
Geothermal heat flux from measured temperature profiles in deep ice boreholes in Antarctica
Pavel Talalay et al.
Related authors
Variations in mineralogy of dust in an ice core obtained from northwestern Greenland over the past 100 years
Naoko Nagatsuka, Kumiko Goto-Azuma, Akane Tsushima, Koji Fujita, Sumito Matoba, Yukihiko Onuma, Moe Kadota, Masahiro Minowa, Yuki Komuro, Hideaki Motoyama, and Teruo Aoki
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-146,https://doi.org/10.5194/cp-2020-146, 2020
Preprint under review for CP
Short summary
A synthesis dataset of permafrost-affected soil thermal conditions for Alaska, USA
Kang Wang, Elchin Jafarov, Irina Overeem, Vladimir Romanovsky, Kevin Schaefer, Gary Clow, Frank Urban, William Cable, Mark Piper, Christopher Schwalm, Tingjun Zhang, Alexander Kholodov, Pamela Sousanes, Michael Loso, and Kenneth Hill
Earth Syst. Sci. Data, 10, 2311–2328, https://doi.org/10.5194/essd-10-2311-2018,https://doi.org/10.5194/essd-10-2311-2018, 2018
Short summary
Post-bubble close-off fractionation of gases in polar firn and ice cores: effects of accumulation rate on permeation through overloading pressure
T. Kobashi, T. Ikeda-Fukazawa, M. Suwa, J. Schwander, T. Kameda, J. Lundin, A. Hori, H. Motoyama, M. Döring, and M. Leuenberger
Atmos. Chem. Phys., 15, 13895–13914, https://doi.org/10.5194/acp-15-13895-2015,https://doi.org/10.5194/acp-15-13895-2015, 2015
Short summary
Numerical simulation of extreme snowmelt observed at the SIGMA-A site, northwest Greenland, during summer 2012
M. Niwano, T. Aoki, S. Matoba, S. Yamaguchi, T. Tanikawa, K. Kuchiki, and H. Motoyama
The Cryosphere, 9, 971–988, https://doi.org/10.5194/tc-9-971-2015,https://doi.org/10.5194/tc-9-971-2015, 2015
Short summary
Climate dependent contrast in surface mass balance in East Antarctica over the past 216 kyr
F. Parrenin, S. Fujita, A. Abe-Ouchi, K. Kawamura, V. Masson-Delmotte, H. Motoyama, F. Saito, M. Severi, B. Stenni, R. Uemura, and E. Wolff
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-377-2015,https://doi.org/10.5194/cpd-11-377-2015, 2015
Revised manuscript has not been submitted
The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference
C. Buizert, K. M. Cuffey, J. P. Severinghaus, D. Baggenstos, T. J. Fudge, E. J. Steig, B. R. Markle, M. Winstrup, R. H. Rhodes, E. J. Brook, T. A. Sowers, G. D. Clow, H. Cheng, R. L. Edwards, M. Sigl, J. R. McConnell, and K. C. Taylor
Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015,https://doi.org/10.5194/cp-11-153-2015, 2015
Related subject area
Using a composite flow law to model deformation in the NEEM deep ice core, Greenland – Part 1: The role of grain size and grain size distribution on deformation of the upper 2207 m
Ernst-Jan N. Kuiper, Ilka Weikusat, Johannes H. P. de Bresser, Daniela Jansen, Gill M. Pennock, and Martyn R. Drury
The Cryosphere, 14, 2429–2448, https://doi.org/10.5194/tc-14-2429-2020,https://doi.org/10.5194/tc-14-2429-2020, 2020
Short summary
Using a composite flow law to model deformation in the NEEM deep ice core, Greenland – Part 2: The role of grain size and premelting on ice deformation at high homologous temperature
Ernst-Jan N. Kuiper, Johannes H. P. de Bresser, Martyn R. Drury, Jan Eichler, Gill M. Pennock, and Ilka Weikusat
The Cryosphere, 14, 2449–2467, https://doi.org/10.5194/tc-14-2449-2020,https://doi.org/10.5194/tc-14-2449-2020, 2020
Short summary
Cited articles
Ackert, R. P., David, J. B., Harold, W. B., Parker, E. C., Mark, D. K., James, L. F., and Eric, J.: Measurements of past ice sheet elevations in interior West Antarctica, Science, 286, 276–280,
https://doi.org/10.1126/science.286.5438.276, 1999.
Ackert, R. P., Mukhopadhyay, S., Parizek, B. R., and Borns, H. W.: Ice elevation near the West Antarctic Ice Sheet divide during the Last
Glaciation, Geophys. Res. Lett., 34, L21506, https://doi.org/10.1029/2007GL031412,
2007.
Ahn, J. and Brook E. J.: Atmospheric CO
2 and Climate on Millennial Time Scales During the Last Glacial Period, Science, 322, 83–85, https://doi.org/10.1126/science.1160832, 2008.
Anderson, J. B., Shipp, S. S., Lowe, A. L., Wellner, J. S., and Mosola, A. B.:
The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent
retreat history: a review, Quaternary Sci. Rev., 21, 49–70,
https://doi.org/10.1016/S0277-3791(01)00083-X, 2002.
An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A., Kanao, M., Li, Y., Maggi, A., and Lévêque, J.-J.: Temperature,
lithosphere-asthenosphere boundary, and heat flux beneath th
e Antarctic
Plate inferred from seismic velocities, J. Geophys. Res.-Sol. Ea., 120, 8720–8742, https://doi.org/10.1002/2015JB011917, 2015.
Augustin, L., Panichi, S., and Frascati, F.: EPICA Dome C 2 drilling
operations: performances, difficulties, results, Ann. Glaciol., 47, 68–72,
https://doi.org/10.3189/172756407786857767, 2007.
Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S. O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J., and Wolff, E.: An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka, Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, 2013.
Begeman, C. B., Tulaczyk, S. M., and Fisher, A. T.: Spatially variable
geothermal heat flux in West Antarctica: Evidence and implications, Geophys.
Res. Lett., 44, 9823–9832, https://doi.org/10.1002/2017gl075579, 2017.
Bereiter, B., Lüthi, D., Siegrist, M., Schüpbach, S., Stocker, T. F., and
Fischer, H.: Mode change of millennial CO
2 variability during the last
glacial cycle associated with a bipolar marine carbon seesaw, P. Natl. Acad. Sci. USA, 109, 9755–9760, https://doi.org/10.1073/pnas.1204069109, 2012.
Bindschadler, R. A., Roberts, E. P., and Iken, A.: Age of Crary Ice Rise,
Antarctica, determined from temperature-depth profiles, Ann. Glaciol., 14,
13–16, https://doi.org/10.1017/S0260305500008168, 1990.
Blankenship, D. D., Bell, R. E., Hodge, S. M., Brozena, J. M., Behrengt, J. C.,
and Finn, C. A.: Active volcanism beneath the West Antarctic ice sheet and
implications for ice-sheet stability, Nature, 361, 526–529,
https://doi.org/10.1038/361526a0, 1993.
Blunier, T. and Brook, E. J.: Timing of millennial-scale climate change in
Antarctica and Greenland during the last glacial period, Science, 291,
109–112, https://doi.org/10.1126/science.291.5501.109, 2001.
Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., Markle, B. R., Winstrup, M., Rhodes, R. H., Brook, E. J., Sowers, T. A., Clow, G. D., Cheng, H., Edwards, R. L., Sigl, M., McConnell, J. R., and Taylor, K. C.: The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference, Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, 2015.
Bulat, S. A., Marie, D., and Petit, J.-R.: Prospects for life in the
subglacial Lake Vostok, Ice and Snow, 52, 92–96,
https://doi.org/10.15356/2076-6734-2012-4-92-96, 2012.
Carter, S. P., Blankenship, D. D., Young, D. A., and Holt, J. W.: Using
radar-sounding data to identify the distribution and sources of subglacial
water: application to Dome C, East Antarctica, J. Glaciol., 55,
1025–1040, https://doi.org/10.3189/002214309790794931, 2009.
Carson, C. J., McLaren, S., Roberts, J. L., Boger, S. D., and Blankenship,
D. D.: Blankenship, hot rocks in a cold place: High sub-glacial heat flow in
East Antarctica, J. Geol. Soc. London, 171, 9–12, https://doi.org/10.1144/jgs2013-030,
2014.
Clow, G. D.: USGS Polar temperature logging system, description and
measurement uncertainties: U.S. Geological Survey Techniques and Methods
2–E3, 24 pp., 2008.
Clow, G. D.: A Green's function approach for assessing the thermal
disturbance caused by drilling deep boreholes in rock or ice, Geophys. J.
Int., 203, 1877–1895, https://doi.org/10.1093/gji/ggv415, 2015.
Clow, G., Waddington, E., Hawley, R., and Dahl-Jensen, D.: Subglacial heat
flow measurements in Greenland and Antarctica., European Geosciences Union
General Assembly, 3–8 April, 2011, Vienna, Austria, Geophysical Research
Abstracts 13, abstract id EGU2011-6629, 2011.
Clow, G. D., Cuffey, K. M., and Waddington, E. D.: High heat-flow beneath the
central portion of the West Antarctic Ice Sheet, American Geophysical Union,
Fall Meeting 2012, 3–7 December, 2012, San-Francisco, USA, abstract id.
C31A-0577, 2012.
Conway, H., Hall, B. L., Denton, G. H., Gades, A. M., and Waddington, E. D.:
Past and future grounding-line retreat of the West Antarctic Ice Sheet,
Science, 286, 280–283, https://doi.org/10.1126/science.286.5438.280, 1999.
Conway, H. and Rasmussen L. A.: Recent thinning and migration of the
Western Divide, central West Antarctica, Geophys. Res. Lett., 36, L12502,
https://doi.org/10.1029/2009GL038072, 2009.
Cuffey, K. M., Clow, G. D., Steig, E. J., Buizert, C., Fudge, T. J., Koutnik,
M., Waddington, E. D., Alley, R. B., and Severinghaus, J. P.: Deglacial
temperature history of West Antarctica, P. Natl. Acad. Sci. USA, 113, 14249–14254, https://doi.org/10.1073/pnas.1609132113, 2016.
Dahl-Jensen, D., Morgan, V. I., and Elcheikh, A.: Monte Carlo inverse
modelling of the Law Dome (Antarctica) temperature profile, Ann. Glaciol.,
29, 145–150, https://doi.org/10.3189/172756499781821102, 1999.
Dahl-Jensen, D., Gundestrup, N., Gogineni, S. P., and Miller, H.: Basal melt
at NorthGRIP modeled from borehole, ice-core and radio-echo sounder
observations, Ann. Glaciol., 37, 217–212, https://doi.org/10.3189/172756403781815492,
2003.
Davis, J. H.: Global map of solid Earth surface heat flow, Geochem. Geophys. Geosys., 14, 4608–4622, https://doi.org/10.1002/ggge.20271, 2013.
Ekaykin, A. A., Lipenkov, V. Y., and Shibaev, Y. A.: Spatial distribution of
the snow accumulation rate along the ice flow lines between Ridge B and Lake
Vostok, Ice and Snow, 4, 122–128,
https://doi.org/10.15356/2076-6734-2012-4-122-128, 2012.
Engelhardt, H.: Ice temperature and high geothermal flux at Siple Dome, West
Antarctica, from borehole measurements, J. Glaciol., 50, 251–256,
https://doi.org/10.3189/172756504781830105, 2004.
Fischer, H., Severinghaus, J., Brook, E., Wolff, E., Albert, M., Alemany, O., Arthern, R., Bentley, C., Blankenship, D., Chappellaz, J., Creyts, T., Dahl-Jensen, D., Dinn, M., Frezzotti, M., Fujita, S., Gallee, H., Hindmarsh, R., Hudspeth, D., Jugie, G., Kawamura, K., Lipenkov, V., Miller, H., Mulvaney, R., Parrenin, F., Pattyn, F., Ritz, C., Schwander, J., Steinhage, D., van Ommen, T., and Wilhelms, F.: Where to find 1.5 million yr old ice for the IPICS “Oldest-Ice” ice core, Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013, 2013.
Fisher, A. T., Mankoff, K. D., Tulaczyk, S. M., Tyler, S. W., Foley, N., and the
WISSARD Science Team: High geothermal heat flux measured below the West
Antarctic Ice Sheet, Sci. Adv., 1, e1500093, https://doi.org/10.1126/sciadv.1500093,
2015.
Fox Maule, C. F., Purucker, M. E., Olsen, N., and Mosegaard, K.: Heat flux
anomalies in Antarctica revealed by satellite magnetic data, Science, 309,
464–467, https://doi.org/10.1126/science.1106888, 2005.
Garfield, D. E. and Ueda, H. T.: Resurvey of the “Byrd” Station, Antarctica,
drill hole, J. Glaciol., 17, 29–34, https://doi.org/10.3189/S0022143000030689,
1976.
Golledge, N. R., Kowalewski, D. E., Naish, T. R., Levy R. H., Fogwill, C. J., and
Gasson, E. G. W.: The multi-millennial Antarctic commitment to future
sea-level rise, Nature, 526, 421–425, https://doi.org/10.1038/nature15706, 2015.
Goodge, J. W.: Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet, The Cryosphere, 12, 491–504, https://doi.org/10.5194/tc-12-491-2018, 2018.
Gow, A. J.: Deep core studies of the accumulation and densification of snow
at Byrd Station and Little America V, Antarctica, CRREL Res. Rep. 197, 45 pp. 1968.
Hansen, B. L., Kelty, J. R., and Gundestrup, N. S.: Resurvey of Byrd Station
drill hole, Antarctica, Cold Reg, Sci. Tech., 17, 1–6, https://doi.org/10.1016/S0165-232X(89)80011-4, 1989.
Hindmarsh, R. C. A.: On the numerical computation of temperature in an ice sheet, J. Glaciol., 45, 568–574, https://doi.org/10.1017/S0022143000001441, 1999.
Hindmarsh, R.: Ice-sheet and glacier modelling, in: Past Glacial
Environments, Elsevier, Amsterdam, Netherlands, 605–661, 2018.
Hondoh, T., Shoji, H., Watanabe, O., Salamatin, A. N., and Lipenkov, V. Y.:
Depth-age and temperature prediction at Dome Fuji station, East Antarctica,
Ann. Glaciol., 35, 384–390, https://doi.org/10.3189/172756402781817013, 2002.
Huybrechts, P., Rybak, O., Pattyn, F., Ruth, U., and Steinhage, D.: Ice thinning, upstream advection, and non-climatic biases for the upper 89 % of the EDML ice core from a nested model of the Antarctic ice sheet, Clim. Past, 3, 577–589, https://doi.org/10.5194/cp-3-577-2007, 2007.
Johnsen, S., Dahl-Jensen, D., Dansgaard, W., and Gundestrup N.: Greenland
palaeotemperatures derived from GRIP bore hole temperature and ice core
isotope profiles, Tellus, 47B, 624–629, https://doi.org/10.3402/tellusb.v47i5.16077,
1995.
Jordan, T. A., Martin, C., Ferraccioli, F., Matsuoka, K., Corr, H., Forsberg,
R., Olesen, A., and Siegert M.: Anomalously high geothermal flux near the
South Pole, Sci. Rep., 8, 16785, https://doi.org/10.1038/s41598-018-35182-0, 2018.
Jouzel, J., Petit, J. R., Souchez, R., Barkov, N. I., Lipenkov, V. Y., Raynaud,
D., Stievenard, M., Vassiliev, N. I., Verbeke, V., and Vimeux, F.: More than
200 meters of lake ice above subglacial Lake Vostok, Antarctica, Science,
286, 2138–2141, https://doi.org/10.1126/science.286.5447.2138, 1999.
Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F.,
Severinghaus, J. P., Hutterli, M. A., Nakazawa, T., Aoki, S., Jouzel, J.,
Raymo, M. E., Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S.,
Goto-Azuma, K., Fujii, Y., and Watanabe, O.: Northern Hemisphere forcing of
climatic cycles in Antarctica over the past 360,000 years, Nature, 448,
912–916, https://doi.org/10.1038/nature06015, 2007.
Koutnik, M. R., Fudge, T. J., Conway, H., Waddington E. D., Neumann T. A.,
Cuffey K. M., Buizert C., and Taylor K. C.: Holocene accumulation and ice flow
near the West Antarctic Ice Sheet Divide ice core site, J. Geophys. Res.-Earth, 121, 907–924, https://doi.org/10.1002/2015JF003668, 2016.
Llubes, M., Lanseau, C., and Rémy, F.: Relations between basal
condition, subglacial hydrological networks and geothermal flux in
Antarctica, Earth Planet. Sc. Lett., 241, 655–662,
https://doi.org/10.1016/j.epsl.2005.10.040, 2006.
Lukin, V. V. and Vasiliev, N. I.: Technological aspects of the final phase of drilling borehole 5G and unsealing Vostok Subglacial Lake, East Antarctica,
Ann. Glaciol., 55, 83–89, https://doi.org/10.3189/2014AoG65A002, 2014.
Martín, C. and Gudmundsson, G. H.: Effects of nonlinear rheology, temperature and anisotropy on the relationship between age and depth at ice divides, The Cryosphere, 6, 1221–1229, https://doi.org/10.5194/tc-6-1221-2012, 2012.
Martos, Y. M., Catalán, M., Jordan, T. A., Golynsky, A., Golynsky, D.,
Eagles, G., and Vaughan, D. G.: Heat flux distribution of Antarctica
unveiled, Geophys. Res. Lett., 44, 11417–11426, https://doi.org/10.1002/2017GL075609,
2017.
Mony, L., Roberts, J. L., and Halpin, J. A.: Inferring geothermal heat flux
from an ice-borehole temperature profile at Law Dome, East Antarctica, J.
Glaciol., 66, 509–519, https://doi.org/10.1017/jog.2020.27, 2020.
Motoyama, H.: The second deep ice coring project at Dome Fuji, Antarctica,
Sci. Drilling, 5, 41–43, https://doi.org/10.2204/iodp.sd.5.05.2007, 2007.
Motoyama, H., Furukawa, T., and Nishio, F.: Study of ice flow
observations in Shirase drainage basin and around Dome Fuji area, East
Antarctica by differential GPS method, Nankyoku Shiryo (Antarctic Record),
52, 216–231, 2008.
Motoyama, H., Furusaki, A., Takahashi, A., Tanaka, Y., Miyahara, M., Takata,
M., Sawagaki, T., Matoba, S., Sugiyama, S., Shinbori, K., and Mori, S.: Deep
borehole logging at Dome Fuji Station, Antarctica, Abstracts of the Fourth
Symposium on Polar Science, 12–15 November, 2013, National Institute of
Polar Research, Tachikawa, Tokyo, Japan, 2013.
Neftel, A., Oeschger, H., Staffelbach, T., and Stauffer, B.: CO
2 record
in the Byrd ice core 50000–5000 years BP, Nature, 331, 609–611, https://doi.org/10.1038/331609a0, 1988.
Nicholls, K. W. and Paren, J. G.: Extending the Antarctic meteorological
record using ice-sheet temperature profiles, J. Climate, 6, 141–150,
https://doi.org/10.1175/1520-0442(1993)006<0141:ETAMRU>2.0.CO;2,
1993.
Parrenin, F., Dreyfus, G., Durand, G., Fujita, S., Gagliardini, O., Gillet, F., Jouzel, J., Kawamura, K., Lhomme, N., Masson-Delmotte, V., Ritz, C., Schwander, J., Shoji, H., Uemura, R., Watanabe, O., and Yoshida, N.: 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica, Clim. Past, 3, 243–259, https://doi.org/10.5194/cp-3-243-2007, 2007a.
Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, H., Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B., Loulergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J.-R., Raisbeck, G., Raynaud, D., Ruth, U., Schwander, J., Severi, M., Spahni, R., Steffensen, J. P., Svensson, A., Udisti, R., Waelbroeck, C., and Wolff, E.: The EDC3 chronology for the EPICA Dome C ice core, Clim. Past, 3, 485–497, https://doi.org/10.5194/cp-3-485-2007, 2007b.
Parrenin, F., Cavitte, M. G. P., Blankenship, D. D., Chappellaz, J., Fischer, H., Gagliardini, O., Masson-Delmotte, V., Passalacqua, O., Ritz, C., Roberts, J., Siegert, M. J., and Young, D. A.: Is there 1.5-million-year-old ice near Dome C, Antarctica?, The Cryosphere, 11, 2427–2437, https://doi.org/10.5194/tc-11-2427-2017, 2017.
Passalacqua, O., Ritz, C., Parrenin, F., Urbini, S., and Frezzotti, M.: Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling, The Cryosphere, 11, 2231–2246, https://doi.org/10.5194/tc-11-2231-2017, 2017.
Pattyn, F.: Antarctic subglacial conditions inferred from a hybrid ice
sheet/ice stream model, Earth Planet. Sci. Lett., 295, 451–461,
https://doi.org/10.1016/j.epsl.2010.04.025, 2010.
Pittard, M. L., Galton-Fenzi, B. K., Roberts, J. L., and Watson, C. S.:
Organization of ice flow by localized regions of elevated geothermal heat
flux, Geophys. Res. Lett., 43, 3342–3350, https://doi.org/10.1002/2016GL068436, 2016.
Pollard, D., DeConto, R. M., and Nyblade, A. A.: Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux, Global Planet. Change, 49, 63–74, https://doi.org/10.1016/j.gloplacha.2005.05.003, 2005.
Price, P. B., Nagornov, O. V., Bay, R., Chirkin, D., He, Y., Miocinovic, P.,
Richards, A., Woschnagg, K., Koci, B., and Zagorodnov, V.: Temperature
profile for glacial ice at the South Pole: Implications for life in a nearby
subglacial lake, P. Natl. Acad. Sci. USA, 99, 7844–7847, https://doi.org/10.1073/pnas.082238999, 2002
Raymond, C. F.: Deformation in the vicinity of ice divides, J. Glaciol., 29,
357–373, https://doi.org/10.1017/S0022143000030288, 1983.
Reeves, C. R. and Rowe, J. E.: Genetic Algorithms: Principles and
Perspectives. A Guide to GA Theory, Kluwer Academic Publishers, Boston,
USA, 2002.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice flow of the Antarctic Ice
Sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336, 2011.
Risk, G. F. and Hochstein, R.: Heat flow at Arrival Heights, Ross Island,
Antarctica, New Zeal. J. Geol. Geop., 17, 629–644,
https://doi.org/10.1080/00288306.1973.10421586, 1974.
Ritz, C., Rommelaere, V., and Dumas, C.: Modeling the evolution of Antarctic
ice sheet over the last 420,000 years: Implications for altitude changes in
the Vostok region, J. Geophys. Res.-Atmos., 106, 31943–31964,
https://doi.org/10.1029/2001JD900232, 2001.
Robin, G. de Q.: Ice movement and temperature distribution in glaciers and
ice sheets, J. Glaciol., 2, 523–532, https://doi.org/10.3189/002214355793702028, 1955.
Salamatin, A. N., Vostretsov R. N., Petit J. R., Lipenkov, V. Y. and Barkov,
N. I.: Geofisicheskiye i paleoklimaticheskie prilozheniya sostavnogo
temperaturnogo profilya iz glubokoi skvazhyni na stantsii Vostok (Antaktida)
[Geophysical and palaeoclimatic implications of the stacked temperature
profile from the deep borehole at Vostok station, Antarctica], Mater.
Glyatsiol. Issled., 85, 233–240, 1998a (in Russian with English summary).
Salamatin, A. N., Lipenkov, V. Y., Barkov, N. I., Jouzel, J., Petit, J. R., and
Raynaud, D.: Ice core age dating and paleothermometer calibration based on
isotope and temperature profiles from deep boreholes at Vostok Station (East
Antarctica), J. Geophys. Res., 103, 8963–8977, https://doi.org/10.1029/97JD02253,
1998b.
Shapiro, N. M. and Ritzwoller, M. H.: Inferring surface heat flux
distributions guided by a global seismic model: particular application to
Antarctica, Earth Planet. Sc. Lett., 223, 213–224,
https://doi.org/10.1016/j.epsl.2004.04.011, 2004.
Shen, W., Wiens, D., Lloyd, A., and Nyblade, A.: A geothermal heat flux map
of Antarctica empirically constrained by seismic structure, Geophys. Res.
Lett., 47, e2020GL086955, https://doi.org/10.1029/2020GL086955, 2020.
Sigl, M., Fudge, T. J., Winstrup, M., Cole-Dai, J., Ferris, D., McConnell, J. R., Taylor, K. C., Welten, K. C., Woodruff, T. E., Adolphi, F., Bisiaux, M., Brook, E. J., Buizert, C., Caffee, M. W., Dunbar, N. W., Edwards, R., Geng, L., Iverson, N., Koffman, B., Layman, L., Maselli, O. J., McGwire, K., Muscheler, R., Nishiizumi, K., Pasteris, D. R., Rhodes, R. H., and Sowers, T. A.: The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP), Clim. Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016, 2016.
Slawny, K. R., Johnson, J. A., Mortensen, N. B., Gibson, C. J., Goetz, J. J.,
Shturmakov, A. J., Lebar, D. A., and Wendricks, A. W.: Production drilling at
WAIS Divide, Ann. Glaciol., 55, 147–155, https://doi.org/10.3189/2014AoG68A018,
2014.
Staffelbach, T., Stauffer, B., Sigg, A., and Oeschger, H.: CO
2
measurements from polar ice cores: more data from different sites, Tellus,
43B, 91–96, https://doi.org/10.3402/tellusb.v43i2.15251, 1991.
Ueda, H.: Byrd Station drilling 1966–69, Ann. Glaciol., 47, 24–27, https://doi.org/10.3189/172756407786857631, 2007.
Ueda, H. T. and Garfield, D. E.: Deep core drilling at Byrd Station,
Antarctica, in: Proceedings of International Symp. on
Antarctic Glaciological Exploration (ISAGE), Hanover, New Hampshire, USA, September 3–7, 1968, edited by: Gow, A. J., Association of Scientific Hydrology, Cambridge, UK, 86, 53–62, 1970.
Ueltzhöffer, K. J., Bendel, V., Freitag, J., Kipfstuhl, S., Wagenbach,
D., Faria, S. H., and Garbe, C. S.: Distribution of air bubbles in the EDML
and EDC (Antarctica) ice cores, using a new method of automatic image
analysis, J. Glaciol., 56, 339–348, https://doi.org/10.3189/002214310791968511,
2010.
Van Wyk De Vries, M., Robert G., Bingham R. G., and Hein A. S.: A new volcanic
province: An inventory of subglacial volcanoes in West Antarctica, in:
Exploration of Subsurface Antarctica: Uncovering Past Changes and Modern Processes, edited by: Siegert, M. J., Jamieson, S. S. R., and White, D. A.,
Geol. Soc. London, Special Publications, 461, 231–248, https://doi.org/10.1144/SP461.7,
2017.
Van Liefferinge, B. and Pattyn, F.: Using ice-flow models to evaluate potential sites of million year-old ice in Antarctica, Clim. Past, 9, 2335–2345, https://doi.org/10.5194/cp-9-2335-2013, 2013.
Van Liefferinge, B., Pattyn, F., Cavitte, M. G. P., Karlsson, N. B., Young, D. A., Sutter, J., and Eisen, O.: Promising Oldest Ice sites in East Antarctica based on thermodynamical modelling, The Cryosphere, 12, 2773–2787, https://doi.org/10.5194/tc-12-2773-2018, 2018.
Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A., Vinther, B., and Wolff, E. W.: The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years, Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, 2013.
Vittuari, L., Vincent, C., Frezzotti, M., Mancini, F., Gandolfi, S.,
Bitelli, G., and Capra, A.: Space geodesy as a tool for measuring ice surface
velocity in the Dome C region and along the ITASE traverse, Ann. Glaciol.,
39, 402–408, https://doi.org/10.3189/172756404781814627, 2004.
Wexler, H.: Growth and thermal structure of the deep ice in Byrd Land,
Antarctica, J. Glaciol., 3, 1075–1087, https://doi.org/10.1017/S0022143000017482,
1961.
WAIS Divide Project Members: Onset of deglacial warming in West Antarctica
driven by local orbital forcing, Nature, 500, 440–444, https://doi.org/10.1038/nature12376, 2013.
Wendt, J., Dietrich, R., Fritsche, M., Wendt, A., Yuskevich, A., Kokhanov,
A., Senatorov, A. Lukin, V., Shibuya K., and Doi, K.: Geodetic observations
of ice flow velocities over the southern part of subglacial Lake Vostok,
Antarctica, and their glaciological implications, Geophys. J. Int., 166,
991–998, https://doi.org/10.1111/j.1365-246X.2006.03061.x, 2006.
Wesche, C., Eisen, O., Oerter, H., Schulte, D., and Steinhage, D.: Surface
topography and ice flow in the vicinity of the EDML deep-drilling site,
Antarctica, J. Glaciol., 53, 442–448, https://doi.org/10.3189/002214307783258512, 2007.
Whillans, I. M.: The equation of continuity and its application to the ice
sheet near ”Byrd” Station, Antarctica, J. Glaciol., 18, 359–371, https://doi.org/10.3189/S0022143000021055, 1977.
Whillans, I. M.: Ice flow along the Byrd Station strain network, Antarctica,
J. Glaciol., 24, 15–28, https://doi.org/10.3189/S0022143000014611, 1979.
Wilhelms, F., Miller, H., Gerasimoff, M. D., Drücker, C., Frenzel, A.,
Fritzsche, D., Grobe, H., Hansen, S. B., Hilmarsson, S.Æ., Hoffmann, G.,
Hörnby, K., Jaeschke, A., Jakobsdóttir, S. S., Juckschat, P.,
Karsten, A., Karsten, L., Kaufmann, P. R., Karlin, T., Kohlberg, E., Kleffel,
G., Lambrecht, A., Lambrecht, A., Lawer, G., Schärmeli, I., Schmitt, J.,
Sheldon, S. G., Takata, M., Trenke, M., Twarloh, B., Valero-Delgado, F., and
Wilhelms-Dick, D.: The EPICA Dronning Maud Land deep drilling operation,
Ann. Glaciol., 55, 355–366, https://doi.org/10.3189/2014AoG68A189, 2014.
Yen, Y.-C.: Review of thermal properties of snow, ice and see ice, CRREL Rep., vol. 81, 27 pp., 1981.
Zagorodnov, V., Nagornov, O., Scambos, T. A., Muto, A., Mosley-Thompson, E., Pettit, E. C., and Tyuflin, S.: Borehole temperatures reveal details of 20th century warming at Bruce Plateau, Antarctic Peninsula, The Cryosphere, 6, 675–686, https://doi.org/10.5194/tc-6-675-2012, 2012.
Zotikov, I. A.: Izmerenie geotermicheskogo potoka tepla v Antarktide
[Measurement of the geothermal heat flow in Antarctica], Sovetskaia
antarkticheskaia ekspeditsiia, Informatsionnyi biulleten [Soviet Antarctic
Expedition, Information Bulletin] 29, 30–32, 1961 (in Russian).