Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-4021-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-4021-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geothermal heat flux from measured temperature profiles in deep ice boreholes in Antarctica
Polar Research Center, Institute for Polar Science and Engineering,
Jilin University, 130021 Changchun, China
Yazhou Li
CORRESPONDING AUTHOR
Polar Research Center, Institute for Polar Science and Engineering,
Jilin University, 130021 Changchun, China
Laurent Augustin
Division Technique de l'INSU, CNRS, 83507 La Seyne sur Mer, France
Gary D. Clow
Institute of Arctic and Alpine Research, University of Colorado
Boulder, Boulder, Colorado, USA
Jialin Hong
Polar Research Center, Institute for Polar Science and Engineering,
Jilin University, 130021 Changchun, China
Eric Lefebvre
Université Grenoble Alpes, CNRS, IRD, IGE, 38000 Grenoble, France
Alexey Markov
Polar Research Center, Institute for Polar Science and Engineering,
Jilin University, 130021 Changchun, China
Hideaki Motoyama
National Institute of Polar Research, Tokyo, Japan
Catherine Ritz
Université Grenoble Alpes, CNRS, IRD, IGE, 38000 Grenoble, France
Related authors
Mikhail A. Sysoev, Pavel G. Talalay, Xiaopeng Fan, Nan Zhang, Da Gong, Yang Yang, Ting Wang, and Zhipeng Deng
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2024-7, https://doi.org/10.5194/gi-2024-7, 2024
Revised manuscript accepted for GI
Short summary
Short summary
Our research introduces a technology for exploring subglacial lakes while keeping them isolated from surface contamination. The RECoverable Autonomous Sonde (RECAS) can drill ice both downward and upward, allowing clean water sampling. In some cases, the sonde should drill at specific angles to follow a trajectory, maintain verticality, or bypass obstacles. This paper describes the general principles of steering RECAS by adjusting the drill's heat distribution and the results of the experiments.
William Colgan, Christopher Shields, Pavel Talalay, Xiaopeng Fan, Austin P. Lines, Joshua Elliott, Harihar Rajaram, Kenneth Mankoff, Morten Jensen, Mira Backes, Yunchen Liu, Xianzhe Wei, Nanna B. Karlsson, Henrik Spanggård, and Allan Ø. Pedersen
Geosci. Instrum. Method. Data Syst., 12, 121–140, https://doi.org/10.5194/gi-12-121-2023, https://doi.org/10.5194/gi-12-121-2023, 2023
Short summary
Short summary
We describe a new drill for glaciers and ice sheets. Instead of drilling down into the ice, via mechanical action, our drill melts into the ice. Our goal is simply to pull a cable of temperature sensors on a one-way trip down to the ice–bed interface. Here, we describe the design and testing of our drill. Under laboratory conditions, our melt-tip drill has an efficiency of ∼ 35 % with a theoretical maximum penetration rate of ∼ 12 m h−1. Under field conditions, our efficiency is just ∼ 15 %.
Youhong Sun, Bing Li, Xiaopeng Fan, Yuansheng Li, Guopin Li, Haibin Yu, Hongzhi Li, Dongliang Wang, Nan Zhang, Da Gong, Rusheng Wang, Yazhou Li, and Pavel G. Talalay
The Cryosphere, 17, 1089–1095, https://doi.org/10.5194/tc-17-1089-2023, https://doi.org/10.5194/tc-17-1089-2023, 2023
Short summary
Short summary
The discovery of polar subglacial lakes, rivers and streams has opened a new frontier of science within a short span. We present a new environmentally friendly approach to study subglacial reservoirs based on the concept of freezing-in instrumented probes carrying a tethering power-signal cable. In January 2022, the probe was successfully tested in East Antarctica: it reached the base of the ice sheet and returned to the ice surface with samples of melted water from the basal ice.
Mikhail A. Sysoev, Pavel G. Talalay, Xiaopeng Fan, Nan Zhang, Da Gong, Yang Yang, Ting Wang, and Zhipeng Deng
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2024-7, https://doi.org/10.5194/gi-2024-7, 2024
Revised manuscript accepted for GI
Short summary
Short summary
Our research introduces a technology for exploring subglacial lakes while keeping them isolated from surface contamination. The RECoverable Autonomous Sonde (RECAS) can drill ice both downward and upward, allowing clean water sampling. In some cases, the sonde should drill at specific angles to follow a trajectory, maintain verticality, or bypass obstacles. This paper describes the general principles of steering RECAS by adjusting the drill's heat distribution and the results of the experiments.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
William Colgan, Christopher Shields, Pavel Talalay, Xiaopeng Fan, Austin P. Lines, Joshua Elliott, Harihar Rajaram, Kenneth Mankoff, Morten Jensen, Mira Backes, Yunchen Liu, Xianzhe Wei, Nanna B. Karlsson, Henrik Spanggård, and Allan Ø. Pedersen
Geosci. Instrum. Method. Data Syst., 12, 121–140, https://doi.org/10.5194/gi-12-121-2023, https://doi.org/10.5194/gi-12-121-2023, 2023
Short summary
Short summary
We describe a new drill for glaciers and ice sheets. Instead of drilling down into the ice, via mechanical action, our drill melts into the ice. Our goal is simply to pull a cable of temperature sensors on a one-way trip down to the ice–bed interface. Here, we describe the design and testing of our drill. Under laboratory conditions, our melt-tip drill has an efficiency of ∼ 35 % with a theoretical maximum penetration rate of ∼ 12 m h−1. Under field conditions, our efficiency is just ∼ 15 %.
Takashi Obase, Ayako Abe-Ouchi, Fuyuki Saito, Shun Tsutaki, Shuji Fujita, Kenji Kawamura, and Hideaki Motoyama
The Cryosphere, 17, 2543–2562, https://doi.org/10.5194/tc-17-2543-2023, https://doi.org/10.5194/tc-17-2543-2023, 2023
Short summary
Short summary
We use a one-dimensional ice-flow model to examine the most suitable core location near Dome Fuji (DF), Antarctica. This model computes the temporal evolution of age and temperature from past to present. We investigate the influence of different parameters of climate and ice sheet on the ice's basal age and compare the results with ground radar surveys. We find that the local ice thickness primarily controls the age because it is critical to the basal melting, which can eliminate the old ice.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Youhong Sun, Bing Li, Xiaopeng Fan, Yuansheng Li, Guopin Li, Haibin Yu, Hongzhi Li, Dongliang Wang, Nan Zhang, Da Gong, Rusheng Wang, Yazhou Li, and Pavel G. Talalay
The Cryosphere, 17, 1089–1095, https://doi.org/10.5194/tc-17-1089-2023, https://doi.org/10.5194/tc-17-1089-2023, 2023
Short summary
Short summary
The discovery of polar subglacial lakes, rivers and streams has opened a new frontier of science within a short span. We present a new environmentally friendly approach to study subglacial reservoirs based on the concept of freezing-in instrumented probes carrying a tethering power-signal cable. In January 2022, the probe was successfully tested in East Antarctica: it reached the base of the ice sheet and returned to the ice surface with samples of melted water from the basal ice.
Ikumi Oyabu, Kenji Kawamura, Shuji Fujita, Ryo Inoue, Hideaki Motoyama, Kotaro Fukui, Motohiro Hirabayashi, Yu Hoshina, Naoyuki Kurita, Fumio Nakazawa, Hiroshi Ohno, Konosuke Sugiura, Toshitaka Suzuki, Shun Tsutaki, Ayako Abe-Ouchi, Masashi Niwano, Frédéric Parrenin, Fuyuki Saito, and Masakazu Yoshimori
Clim. Past, 19, 293–321, https://doi.org/10.5194/cp-19-293-2023, https://doi.org/10.5194/cp-19-293-2023, 2023
Short summary
Short summary
We reconstructed accumulation rate around Dome Fuji, Antarctica, over the last 5000 years from 15 shallow ice cores and seven snow pits. We found a long-term decreasing trend in the preindustrial period, which may be associated with secular surface cooling and sea ice expansion. Centennial-scale variations were also found, which may partly be related to combinations of volcanic, solar and greenhouse gas forcings. The most rapid and intense increases of accumulation rate occurred since 1850 CE.
Shun Tsutaki, Shuji Fujita, Kenji Kawamura, Ayako Abe-Ouchi, Kotaro Fukui, Hideaki Motoyama, Yu Hoshina, Fumio Nakazawa, Takashi Obase, Hiroshi Ohno, Ikumi Oyabu, Fuyuki Saito, Konosuke Sugiura, and Toshitaka Suzuki
The Cryosphere, 16, 2967–2983, https://doi.org/10.5194/tc-16-2967-2022, https://doi.org/10.5194/tc-16-2967-2022, 2022
Short summary
Short summary
We constructed an ice thickness map across the Dome Fuji region, East Antarctica, from improved radar data and previous data that had been collected since the late 1980s. The data acquired using the improved radar systems allowed basal topography to be identified with higher accuracy. The new ice thickness data show the bedrock topography, particularly the complex terrain of subglacial valleys and highlands south of Dome Fuji, with substantially high detail.
Naoko Nagatsuka, Kumiko Goto-Azuma, Akane Tsushima, Koji Fujita, Sumito Matoba, Yukihiko Onuma, Remi Dallmayr, Moe Kadota, Motohiro Hirabayashi, Jun Ogata, Yoshimi Ogawa-Tsukagawa, Kyotaro Kitamura, Masahiro Minowa, Yuki Komuro, Hideaki Motoyama, and Teruo Aoki
Clim. Past, 17, 1341–1362, https://doi.org/10.5194/cp-17-1341-2021, https://doi.org/10.5194/cp-17-1341-2021, 2021
Short summary
Short summary
Here we present a first high-temporal-resolution record of mineral composition in a Greenland ice core (SIGMA-D) over the past 100 years using SEM–EDS analysis. Our results show that the ice core dust composition varied on multi-decadal scales, which was likely affected by local temperature changes. We suggest that the ice core dust was constantly supplied from distant sources (mainly northern Canada) as well as local ice-free areas in warm periods (1915 to 1949 and 2005 to 2013).
Kang Wang, Elchin Jafarov, Irina Overeem, Vladimir Romanovsky, Kevin Schaefer, Gary Clow, Frank Urban, William Cable, Mark Piper, Christopher Schwalm, Tingjun Zhang, Alexander Kholodov, Pamela Sousanes, Michael Loso, and Kenneth Hill
Earth Syst. Sci. Data, 10, 2311–2328, https://doi.org/10.5194/essd-10-2311-2018, https://doi.org/10.5194/essd-10-2311-2018, 2018
Short summary
Short summary
Ground thermal and moisture data are important indicators of the rapid permafrost changes in the Arctic. To better understand the changes, we need a comprehensive dataset across various sites. We synthesize permafrost-related data in the state of Alaska. It should be a valuable permafrost dataset that is worth maintaining in the future. On a wider level, it also provides a prototype of basic data collection and management for permafrost regions in general.
Gary D. Clow
Geosci. Model Dev., 11, 4889–4908, https://doi.org/10.5194/gmd-11-4889-2018, https://doi.org/10.5194/gmd-11-4889-2018, 2018
Short summary
Short summary
CVPM is a modular heat-transfer modeling system designed for scientific and engineering studies in permafrost terrain, and as an educational tool. CVPM implements the heat-transfer equations in both Cartesian and cylindrical coordinates. To accommodate a diversity of geologic settings, a variety of materials can be specified within the model domain. CVPM can be used over a broad range of depth, temperature, porosity, water saturation, and solute conditions on either Earth or Mars.
T. Kobashi, T. Ikeda-Fukazawa, M. Suwa, J. Schwander, T. Kameda, J. Lundin, A. Hori, H. Motoyama, M. Döring, and M. Leuenberger
Atmos. Chem. Phys., 15, 13895–13914, https://doi.org/10.5194/acp-15-13895-2015, https://doi.org/10.5194/acp-15-13895-2015, 2015
Short summary
Short summary
We find that argon/nitrogen ratios of trapped air in the GISP2 ice core on “gas ages” are significantly negatively correlated with accumulation rate changes over the past 6000 years. Lines of evidence indicate that changes in overloading pressure at bubble closeoff depths induced the gas fractionation in closed bubbles. Further understanding of the fractionation processes may lead to a new proxy for the past temperature and accumulation rate.
S. Fujita, F. Parrenin, M. Severi, H. Motoyama, and E. W. Wolff
Clim. Past, 11, 1395–1416, https://doi.org/10.5194/cp-11-1395-2015, https://doi.org/10.5194/cp-11-1395-2015, 2015
M. Niwano, T. Aoki, S. Matoba, S. Yamaguchi, T. Tanikawa, K. Kuchiki, and H. Motoyama
The Cryosphere, 9, 971–988, https://doi.org/10.5194/tc-9-971-2015, https://doi.org/10.5194/tc-9-971-2015, 2015
Short summary
Short summary
A physical snowpack model SMAP and in situ meteorological and snow data obtained at site SIGMA-A on the northwest Greenland ice sheet are used to assess surface energy balance during the extreme near-surface snowmelt event around 12 July 2012. We determined that the main factor for the melt event observed at the SIGMA-A site was low-level clouds accompanied by a significant temperature increase, which induced surface heating via cloud radiative forcing in the polar region.
F. Parrenin, S. Fujita, A. Abe-Ouchi, K. Kawamura, V. Masson-Delmotte, H. Motoyama, F. Saito, M. Severi, B. Stenni, R. Uemura, and E. Wolff
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-377-2015, https://doi.org/10.5194/cpd-11-377-2015, 2015
Revised manuscript has not been submitted
C. Buizert, K. M. Cuffey, J. P. Severinghaus, D. Baggenstos, T. J. Fudge, E. J. Steig, B. R. Markle, M. Winstrup, R. H. Rhodes, E. J. Brook, T. A. Sowers, G. D. Clow, H. Cheng, R. L. Edwards, M. Sigl, J. R. McConnell, and K. C. Taylor
Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, https://doi.org/10.5194/cp-11-153-2015, 2015
G. D. Clow
Earth Syst. Sci. Data, 6, 201–218, https://doi.org/10.5194/essd-6-201-2014, https://doi.org/10.5194/essd-6-201-2014, 2014
Y. Motizuki, Y. Nakai, K. Takahashi, M. Igarashi, H. Motoyama, and K. Suzuki
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-769-2014, https://doi.org/10.5194/tcd-8-769-2014, 2014
Revised manuscript has not been submitted
Related subject area
Discipline: Ice sheets | Subject: Ice Physics
Failure strength of glacier ice inferred from Greenland crevasses
Evolution of crystallographic preferred orientations of ice sheared to high strains by equal-channel angular pressing
Grain growth of natural and synthetic ice at 0 °C
Ice fabrics in two-dimensional flows: beyond pure and simple shear
Modeling enhanced firn densification due to strain softening
Polarimetric radar reveals the spatial distribution of ice fabric at domes and divides in East Antarctica
Sensitivity of ice loss to uncertainty in flow law parameters in an idealized one-dimensional geometry
Observation of an optical anisotropy in the deep glacial ice at the geographic South Pole using a laser dust logger
Using a composite flow law to model deformation in the NEEM deep ice core, Greenland – Part 1: The role of grain size and grain size distribution on deformation of the upper 2207 m
Using a composite flow law to model deformation in the NEEM deep ice core, Greenland – Part 2: The role of grain size and premelting on ice deformation at high homologous temperature
The role of subtemperate slip in thermally driven ice stream margin migration
Deriving micro- to macro-scale seismic velocities from ice-core c axis orientations
Aslak Grinsted, Nicholas Mossor Rathmann, Ruth Mottram, Anne Munck Solgaard, Joachim Mathiesen, and Christine Schøtt Hvidberg
The Cryosphere, 18, 1947–1957, https://doi.org/10.5194/tc-18-1947-2024, https://doi.org/10.5194/tc-18-1947-2024, 2024
Short summary
Short summary
Ice fracture can cause glacier crevassing and calving. These natural hazards can also modulate the flow and evolution of ice sheets. In a new study, we use a new high-resolution dataset to determine a new failure criterion for glacier ice. Surprisingly, the strength of ice depends on the mode of deformation, and this has potential implications for the currently used flow law of ice.
Qinyu Wang, Sheng Fan, Daniel H. Richards, Rachel Worthington, David J. Prior, and Chao Qi
EGUsphere, https://doi.org/10.5194/egusphere-2024-331, https://doi.org/10.5194/egusphere-2024-331, 2024
Short summary
Short summary
To examine if the single cluster fabric in natural ice is formed due to high strains, we deformed synthetic ice to large strains using a unique technique. A shear strain of 6.2 was achieved in laboratory. We explored how the two mechanisms, which control microstructure and fabric evolution, evolve with strain, and established a fabric development model. These results will help understanding the fabrics in natural ice and further comprehending glacier and ice sheet flow dynamics.
Sheng Fan, David J. Prior, Brent Pooley, Hamish Bowman, Lucy Davidson, David Wallis, Sandra Piazolo, Chao Qi, David L. Goldsby, and Travis F. Hager
The Cryosphere, 17, 3443–3459, https://doi.org/10.5194/tc-17-3443-2023, https://doi.org/10.5194/tc-17-3443-2023, 2023
Short summary
Short summary
The microstructure of ice controls the behaviour of polar ice flow. Grain growth can modify the microstructure of ice; however, its processes and kinetics are poorly understood. We conduct grain-growth experiments on synthetic and natural ice samples at 0 °C. Microstructural data show synthetic ice grows continuously with time. In contrast, natural ice does not grow within a month. The inhibition of grain growth in natural ice is largely contributed by bubble pinning at ice grain boundaries.
Daniel H. Richards, Samuel S. Pegler, and Sandra Piazolo
The Cryosphere, 16, 4571–4592, https://doi.org/10.5194/tc-16-4571-2022, https://doi.org/10.5194/tc-16-4571-2022, 2022
Short summary
Short summary
Understanding the orientation of ice grains is key for predicting ice flow. We explore the evolution of these orientations using a new efficient model. We present an exploration of the patterns produced under a range of temperatures and 2D deformations, including for the first time a universal regime diagram. We do this for deformations relevant to ice sheets but not studied in experiments. These results can be used to understand drilled ice cores and improve future modelling of ice sheets.
Falk M. Oraschewski and Aslak Grinsted
The Cryosphere, 16, 2683–2700, https://doi.org/10.5194/tc-16-2683-2022, https://doi.org/10.5194/tc-16-2683-2022, 2022
Short summary
Short summary
Old snow (denoted as firn) accumulates in the interior of ice sheets and gets densified into glacial ice. Typically, this densification is assumed to only depend on temperature and accumulation rate. However, it has been observed that stretching of the firn by horizontal flow also enhances this process. Here, we show how to include this effect in classical firn models. With the model we confirm that softening of the firn controls firn densification in areas with strong horizontal stretching.
M. Reza Ershadi, Reinhard Drews, Carlos Martín, Olaf Eisen, Catherine Ritz, Hugh Corr, Julia Christmann, Ole Zeising, Angelika Humbert, and Robert Mulvaney
The Cryosphere, 16, 1719–1739, https://doi.org/10.5194/tc-16-1719-2022, https://doi.org/10.5194/tc-16-1719-2022, 2022
Short summary
Short summary
Radio waves transmitted through ice split up and inform us about the ice sheet interior and orientation of single ice crystals. This can be used to infer how ice flows and improve projections on how it will evolve in the future. Here we used an inverse approach and developed a new algorithm to infer ice properties from observed radar data. We applied this technique to the radar data obtained at two EPICA drilling sites, where ice cores were used to validate our results.
Maria Zeitz, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 14, 3537–3550, https://doi.org/10.5194/tc-14-3537-2020, https://doi.org/10.5194/tc-14-3537-2020, 2020
Short summary
Short summary
The flow of ice drives mass losses in the large ice sheets. Sea-level rise projections rely on ice-sheet models, solving the physics of ice flow and melt. Unfortunately the parameters in the physics of flow are uncertain. Here we show, in an idealized setup, that these uncertainties can double flow-driven mass losses within the possible range of parameters. It is possible that this uncertainty carries over to realistic sea-level rise projections.
Martin Rongen, Ryan Carlton Bay, and Summer Blot
The Cryosphere, 14, 2537–2543, https://doi.org/10.5194/tc-14-2537-2020, https://doi.org/10.5194/tc-14-2537-2020, 2020
Short summary
Short summary
We report on the observation of a directional anisotropy in the intensity of backscattered light. The measurement was performed using a laser dust logger in the SPC14 drill hole at the geographic South Pole. We find the anisotropy axis to be compatible with the ice flow direction. It is discussed in comparison to a similar anisotropy observed by the IceCube Neutrino Observatory. In future, the measurement principle may provide a continuous record of crystal properties along entire drill holes.
Ernst-Jan N. Kuiper, Ilka Weikusat, Johannes H. P. de Bresser, Daniela Jansen, Gill M. Pennock, and Martyn R. Drury
The Cryosphere, 14, 2429–2448, https://doi.org/10.5194/tc-14-2429-2020, https://doi.org/10.5194/tc-14-2429-2020, 2020
Short summary
Short summary
A composite flow law model applied to crystal size distributions from the NEEM deep ice core predicts that fine-grained layers in ice from the last Glacial period localize deformation as internal shear zones in the Greenland ice sheet deforming by grain-size-sensitive creep. This prediction is consistent with microstructures in Glacial age ice.
Ernst-Jan N. Kuiper, Johannes H. P. de Bresser, Martyn R. Drury, Jan Eichler, Gill M. Pennock, and Ilka Weikusat
The Cryosphere, 14, 2449–2467, https://doi.org/10.5194/tc-14-2449-2020, https://doi.org/10.5194/tc-14-2449-2020, 2020
Short summary
Short summary
Fast ice flow occurs in deeper parts of polar ice sheets, driven by high stress and high temperatures. Above 262 K ice flow is further enhanced, probably by the formation of thin melt layers between ice crystals. A model applying an experimentally derived composite flow law, using temperature and grain size values from the deepest 540 m of the NEEM ice core, predicts that flow in fine-grained layers is enhanced by a factor of 10 compared to coarse-grained layers in the Greenland ice sheet.
Marianne Haseloff, Christian Schoof, and Olivier Gagliardini
The Cryosphere, 12, 2545–2568, https://doi.org/10.5194/tc-12-2545-2018, https://doi.org/10.5194/tc-12-2545-2018, 2018
Short summary
Short summary
The widths of the Siple Coast ice streams evolve on decadal to centennial timescales. We investigate how the rate of thermally driven ice stream widening depends on heat dissipation in the ice stream margin and at the bed, and on the inflow of cold ice from the ice ridge. As determining the migration rate requires resolving heat transfer processes on very small scales, we derive a parametrization of the migration rate in terms of parameters that are available from large-scale model outputs.
Johanna Kerch, Anja Diez, Ilka Weikusat, and Olaf Eisen
The Cryosphere, 12, 1715–1734, https://doi.org/10.5194/tc-12-1715-2018, https://doi.org/10.5194/tc-12-1715-2018, 2018
Short summary
Short summary
We investigate the effect of crystal anisotropy on seismic velocities in glacier ice by calculating seismic phase velocities using the exact c axis angles to describe the crystal orientations in ice-core samples for an alpine and a polar ice core. Our results provide uncertainty estimates for earlier established approximative calculations. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane.
Cited articles
Ackert, R. P., David, J. B., Harold, W. B., Parker, E. C., Mark, D. K., James, L. F., and Eric, J.: Measurements of past ice sheet elevations in interior West Antarctica, Science, 286, 276–280,
https://doi.org/10.1126/science.286.5438.276, 1999.
Ackert, R. P., Mukhopadhyay, S., Parizek, B. R., and Borns, H. W.: Ice elevation near the West Antarctic Ice Sheet divide during the Last
Glaciation, Geophys. Res. Lett., 34, L21506, https://doi.org/10.1029/2007GL031412,
2007.
Ahn, J. and Brook E. J.: Atmospheric CO2 and Climate on Millennial Time Scales During the Last Glacial Period, Science, 322, 83–85, https://doi.org/10.1126/science.1160832, 2008.
Anderson, J. B., Shipp, S. S., Lowe, A. L., Wellner, J. S., and Mosola, A. B.:
The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent
retreat history: a review, Quaternary Sci. Rev., 21, 49–70,
https://doi.org/10.1016/S0277-3791(01)00083-X, 2002.
An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A., Kanao, M., Li, Y., Maggi, A., and Lévêque, J.-J.: Temperature,
lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic
Plate inferred from seismic velocities, J. Geophys. Res.-Sol. Ea., 120, 8720–8742, https://doi.org/10.1002/2015JB011917, 2015.
Augustin, L., Panichi, S., and Frascati, F.: EPICA Dome C 2 drilling
operations: performances, difficulties, results, Ann. Glaciol., 47, 68–72,
https://doi.org/10.3189/172756407786857767, 2007.
Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S. O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J., and Wolff, E.: An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka, Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, 2013.
Begeman, C. B., Tulaczyk, S. M., and Fisher, A. T.: Spatially variable
geothermal heat flux in West Antarctica: Evidence and implications, Geophys.
Res. Lett., 44, 9823–9832, https://doi.org/10.1002/2017gl075579, 2017.
Bereiter, B., Lüthi, D., Siegrist, M., Schüpbach, S., Stocker, T. F., and
Fischer, H.: Mode change of millennial CO2 variability during the last
glacial cycle associated with a bipolar marine carbon seesaw, P. Natl. Acad. Sci. USA, 109, 9755–9760, https://doi.org/10.1073/pnas.1204069109, 2012.
Bindschadler, R. A., Roberts, E. P., and Iken, A.: Age of Crary Ice Rise,
Antarctica, determined from temperature-depth profiles, Ann. Glaciol., 14,
13–16, https://doi.org/10.1017/S0260305500008168, 1990.
Blankenship, D. D., Bell, R. E., Hodge, S. M., Brozena, J. M., Behrengt, J. C.,
and Finn, C. A.: Active volcanism beneath the West Antarctic ice sheet and
implications for ice-sheet stability, Nature, 361, 526–529,
https://doi.org/10.1038/361526a0, 1993.
Blunier, T. and Brook, E. J.: Timing of millennial-scale climate change in
Antarctica and Greenland during the last glacial period, Science, 291,
109–112, https://doi.org/10.1126/science.291.5501.109, 2001.
Budd, W. F., Jenssen, D., and Smith I. N.: A three-dimensional time-dependent
model of three West Antarctic ice-sheet, Ann. Glaciol., 5, 29–36,
https://doi.org/10.1017/S026030550000344X, 1984.
Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., Markle, B. R., Winstrup, M., Rhodes, R. H., Brook, E. J., Sowers, T. A., Clow, G. D., Cheng, H., Edwards, R. L., Sigl, M., McConnell, J. R., and Taylor, K. C.: The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference, Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, 2015.
Bulat, S. A., Marie, D., and Petit, J.-R.: Prospects for life in the
subglacial Lake Vostok, Ice and Snow, 52, 92–96,
https://doi.org/10.15356/2076-6734-2012-4-92-96, 2012.
Burton-Johnson, A., Dziadek, R., and Martin, C.: Geothermal heat flow in Antarctica: current and future directions, The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-59, in review, 2020.
Carter, S. P., Blankenship, D. D., Young, D. A., and Holt, J. W.: Using
radar-sounding data to identify the distribution and sources of subglacial
water: application to Dome C, East Antarctica, J. Glaciol., 55,
1025–1040, https://doi.org/10.3189/002214309790794931, 2009.
Carson, C. J., McLaren, S., Roberts, J. L., Boger, S. D., and Blankenship,
D. D.: Blankenship, hot rocks in a cold place: High sub-glacial heat flow in
East Antarctica, J. Geol. Soc. London, 171, 9–12, https://doi.org/10.1144/jgs2013-030,
2014.
Clow, G. D.: USGS Polar temperature logging system, description and
measurement uncertainties: U.S. Geological Survey Techniques and Methods
2–E3, 24 pp., 2008.
Clow, G. D.: A Green's function approach for assessing the thermal
disturbance caused by drilling deep boreholes in rock or ice, Geophys. J.
Int., 203, 1877–1895, https://doi.org/10.1093/gji/ggv415, 2015.
Clow, G., Waddington, E., Hawley, R., and Dahl-Jensen, D.: Subglacial heat
flow measurements in Greenland and Antarctica., European Geosciences Union
General Assembly, 3–8 April, 2011, Vienna, Austria, Geophysical Research
Abstracts 13, abstract id EGU2011-6629, 2011.
Clow, G. D., Cuffey, K. M., and Waddington, E. D.: High heat-flow beneath the
central portion of the West Antarctic Ice Sheet, American Geophysical Union,
Fall Meeting 2012, 3–7 December, 2012, San-Francisco, USA, abstract id.
C31A-0577, 2012.
Conway, H., Hall, B. L., Denton, G. H., Gades, A. M., and Waddington, E. D.:
Past and future grounding-line retreat of the West Antarctic Ice Sheet,
Science, 286, 280–283, https://doi.org/10.1126/science.286.5438.280, 1999.
Conway, H. and Rasmussen L. A.: Recent thinning and migration of the
Western Divide, central West Antarctica, Geophys. Res. Lett., 36, L12502,
https://doi.org/10.1029/2009GL038072, 2009.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, 4th edn., Butterworth-Heinemann, Oxford, 2010.
Cuffey, K. M., Clow, G. D., Steig, E. J., Buizert, C., Fudge, T. J., Koutnik,
M., Waddington, E. D., Alley, R. B., and Severinghaus, J. P.: Deglacial
temperature history of West Antarctica, P. Natl. Acad. Sci. USA, 113, 14249–14254, https://doi.org/10.1073/pnas.1609132113, 2016.
Dahl-Jensen, D., Morgan, V. I., and Elcheikh, A.: Monte Carlo inverse
modelling of the Law Dome (Antarctica) temperature profile, Ann. Glaciol.,
29, 145–150, https://doi.org/10.3189/172756499781821102, 1999.
Dahl-Jensen, D., Gundestrup, N., Gogineni, S. P., and Miller, H.: Basal melt
at NorthGRIP modeled from borehole, ice-core and radio-echo sounder
observations, Ann. Glaciol., 37, 217–212, https://doi.org/10.3189/172756403781815492,
2003.
Davis, J. H.: Global map of solid Earth surface heat flow, Geochem. Geophys. Geosys., 14, 4608–4622, https://doi.org/10.1002/ggge.20271, 2013.
Decker, E. R. and Bucher, G. J.: Geothermal studies in the Ross Island-Dry Valley region, Antarct. Geosci., 4, 887–894, 1982.
Ekaykin, A. A., Lipenkov, V. Y., and Shibaev, Y. A.: Spatial distribution of
the snow accumulation rate along the ice flow lines between Ridge B and Lake
Vostok, Ice and Snow, 4, 122–128,
https://doi.org/10.15356/2076-6734-2012-4-122-128, 2012.
Engelhardt, H.: Ice temperature and high geothermal flux at Siple Dome, West
Antarctica, from borehole measurements, J. Glaciol., 50, 251–256,
https://doi.org/10.3189/172756504781830105, 2004.
Fischer, H., Severinghaus, J., Brook, E., Wolff, E., Albert, M., Alemany, O., Arthern, R., Bentley, C., Blankenship, D., Chappellaz, J., Creyts, T., Dahl-Jensen, D., Dinn, M., Frezzotti, M., Fujita, S., Gallee, H., Hindmarsh, R., Hudspeth, D., Jugie, G., Kawamura, K., Lipenkov, V., Miller, H., Mulvaney, R., Parrenin, F., Pattyn, F., Ritz, C., Schwander, J., Steinhage, D., van Ommen, T., and Wilhelms, F.: Where to find 1.5 million yr old ice for the IPICS “Oldest-Ice” ice core, Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013, 2013.
Fisher, A. T., Mankoff, K. D., Tulaczyk, S. M., Tyler, S. W., Foley, N., and the
WISSARD Science Team: High geothermal heat flux measured below the West
Antarctic Ice Sheet, Sci. Adv., 1, e1500093, https://doi.org/10.1126/sciadv.1500093,
2015.
Fox Maule, C. F., Purucker, M. E., Olsen, N., and Mosegaard, K.: Heat flux
anomalies in Antarctica revealed by satellite magnetic data, Science, 309,
464–467, https://doi.org/10.1126/science.1106888, 2005.
Garfield, D. E. and Ueda, H. T.: Resurvey of the “Byrd” Station, Antarctica,
drill hole, J. Glaciol., 17, 29–34, https://doi.org/10.3189/S0022143000030689,
1976.
Golledge, N. R., Kowalewski, D. E., Naish, T. R., Levy R. H., Fogwill, C. J., and
Gasson, E. G. W.: The multi-millennial Antarctic commitment to future
sea-level rise, Nature, 526, 421–425, https://doi.org/10.1038/nature15706, 2015.
Goodge, J. W.: Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet, The Cryosphere, 12, 491–504, https://doi.org/10.5194/tc-12-491-2018, 2018.
Gow, A. J.: Deep core studies of the accumulation and densification of snow
at Byrd Station and Little America V, Antarctica, CRREL Res. Rep. 197, 45 pp. 1968.
Gundestrup, N. S., Clausen, H. B., and Hansen, B. L.: The UCPH borehole logger,
Mem. Nat. Inst. Polar Res., 49, 224–233, 1994.
Hansen, B. L., Kelty, J. R., and Gundestrup, N. S.: Resurvey of Byrd Station
drill hole, Antarctica, Cold Reg, Sci. Tech., 17, 1–6, https://doi.org/10.1016/S0165-232X(89)80011-4, 1989.
Hindmarsh, R. C. A.: On the numerical computation of temperature in an ice sheet, J. Glaciol., 45, 568–574, https://doi.org/10.1017/S0022143000001441, 1999.
Hindmarsh, R.: Ice-sheet and glacier modelling, in: Past Glacial
Environments, Elsevier, Amsterdam, Netherlands, 605–661, 2018.
Hondoh, T., Shoji, H., Watanabe, O., Salamatin, A. N., and Lipenkov, V. Y.:
Depth-age and temperature prediction at Dome Fuji station, East Antarctica,
Ann. Glaciol., 35, 384–390, https://doi.org/10.3189/172756402781817013, 2002.
Huybrechts, P., Rybak, O., Pattyn, F., Ruth, U., and Steinhage, D.: Ice thinning, upstream advection, and non-climatic biases for the upper 89 % of the EDML ice core from a nested model of the Antarctic ice sheet, Clim. Past, 3, 577–589, https://doi.org/10.5194/cp-3-577-2007, 2007.
Johnsen, S., Dahl-Jensen, D., Dansgaard, W., and Gundestrup N.: Greenland
palaeotemperatures derived from GRIP bore hole temperature and ice core
isotope profiles, Tellus, 47B, 624–629, https://doi.org/10.3402/tellusb.v47i5.16077,
1995.
Jordan, T. A., Martin, C., Ferraccioli, F., Matsuoka, K., Corr, H., Forsberg,
R., Olesen, A., and Siegert M.: Anomalously high geothermal flux near the
South Pole, Sci. Rep., 8, 16785, https://doi.org/10.1038/s41598-018-35182-0, 2018.
Jouzel, J., Petit, J. R., Souchez, R., Barkov, N. I., Lipenkov, V. Y., Raynaud,
D., Stievenard, M., Vassiliev, N. I., Verbeke, V., and Vimeux, F.: More than
200 meters of lake ice above subglacial Lake Vostok, Antarctica, Science,
286, 2138–2141, https://doi.org/10.1126/science.286.5447.2138, 1999.
Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F.,
Severinghaus, J. P., Hutterli, M. A., Nakazawa, T., Aoki, S., Jouzel, J.,
Raymo, M. E., Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S.,
Goto-Azuma, K., Fujii, Y., and Watanabe, O.: Northern Hemisphere forcing of
climatic cycles in Antarctica over the past 360,000 years, Nature, 448,
912–916, https://doi.org/10.1038/nature06015, 2007.
Koutnik, M. R., Fudge, T. J., Conway, H., Waddington E. D., Neumann T. A.,
Cuffey K. M., Buizert C., and Taylor K. C.: Holocene accumulation and ice flow
near the West Antarctic Ice Sheet Divide ice core site, J. Geophys. Res.-Earth, 121, 907–924, https://doi.org/10.1002/2015JF003668, 2016.
Lefebvre, E., Augustin, L., and Maitre, M.: The EPICA borehole logger, Mem. Nat. Inst. Polar Res., 56, 264–274, 2002.
Llubes, M., Lanseau, C., and Rémy, F.: Relations between basal
condition, subglacial hydrological networks and geothermal flux in
Antarctica, Earth Planet. Sc. Lett., 241, 655–662,
https://doi.org/10.1016/j.epsl.2005.10.040, 2006.
Lukin, V. V. and Vasiliev, N. I.: Technological aspects of the final phase of drilling borehole 5G and unsealing Vostok Subglacial Lake, East Antarctica,
Ann. Glaciol., 55, 83–89, https://doi.org/10.3189/2014AoG65A002, 2014.
Martín, C. and Gudmundsson, G. H.: Effects of nonlinear rheology, temperature and anisotropy on the relationship between age and depth at ice divides, The Cryosphere, 6, 1221–1229, https://doi.org/10.5194/tc-6-1221-2012, 2012.
Martos, Y. M., Catalán, M., Jordan, T. A., Golynsky, A., Golynsky, D.,
Eagles, G., and Vaughan, D. G.: Heat flux distribution of Antarctica
unveiled, Geophys. Res. Lett., 44, 11417–11426, https://doi.org/10.1002/2017GL075609,
2017.
Mony, L., Roberts, J. L., and Halpin, J. A.: Inferring geothermal heat flux
from an ice-borehole temperature profile at Law Dome, East Antarctica, J.
Glaciol., 66, 509–519, https://doi.org/10.1017/jog.2020.27, 2020.
Motoyama, H.: The second deep ice coring project at Dome Fuji, Antarctica,
Sci. Drilling, 5, 41–43, https://doi.org/10.2204/iodp.sd.5.05.2007, 2007.
Motoyama, H., Furukawa, T., and Nishio, F.: Study of ice flow
observations in Shirase drainage basin and around Dome Fuji area, East
Antarctica by differential GPS method, Nankyoku Shiryo (Antarctic Record),
52, 216–231, 2008.
Motoyama, H., Furusaki, A., Takahashi, A., Tanaka, Y., Miyahara, M., Takata,
M., Sawagaki, T., Matoba, S., Sugiyama, S., Shinbori, K., and Mori, S.: Deep
borehole logging at Dome Fuji Station, Antarctica, Abstracts of the Fourth
Symposium on Polar Science, 12–15 November, 2013, National Institute of
Polar Research, Tachikawa, Tokyo, Japan, 2013.
Neftel, A., Oeschger, H., Staffelbach, T., and Stauffer, B.: CO2 record
in the Byrd ice core 50000–5000 years BP, Nature, 331, 609–611, https://doi.org/10.1038/331609a0, 1988.
Nicholls, K. W. and Paren, J. G.: Extending the Antarctic meteorological
record using ice-sheet temperature profiles, J. Climate, 6, 141–150,
https://doi.org/10.1175/1520-0442(1993)006<0141:ETAMRU>2.0.CO;2,
1993.
Parrenin, F., Dreyfus, G., Durand, G., Fujita, S., Gagliardini, O., Gillet, F., Jouzel, J., Kawamura, K., Lhomme, N., Masson-Delmotte, V., Ritz, C., Schwander, J., Shoji, H., Uemura, R., Watanabe, O., and Yoshida, N.: 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica, Clim. Past, 3, 243–259, https://doi.org/10.5194/cp-3-243-2007, 2007a.
Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, H., Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B., Loulergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J.-R., Raisbeck, G., Raynaud, D., Ruth, U., Schwander, J., Severi, M., Spahni, R., Steffensen, J. P., Svensson, A., Udisti, R., Waelbroeck, C., and Wolff, E.: The EDC3 chronology for the EPICA Dome C ice core, Clim. Past, 3, 485–497, https://doi.org/10.5194/cp-3-485-2007, 2007b.
Parrenin, F., Cavitte, M. G. P., Blankenship, D. D., Chappellaz, J., Fischer, H., Gagliardini, O., Masson-Delmotte, V., Passalacqua, O., Ritz, C., Roberts, J., Siegert, M. J., and Young, D. A.: Is there 1.5-million-year-old ice near Dome C, Antarctica?, The Cryosphere, 11, 2427–2437, https://doi.org/10.5194/tc-11-2427-2017, 2017.
Passalacqua, O., Ritz, C., Parrenin, F., Urbini, S., and Frezzotti, M.: Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling, The Cryosphere, 11, 2231–2246, https://doi.org/10.5194/tc-11-2231-2017, 2017.
Pattyn, F.: Antarctic subglacial conditions inferred from a hybrid ice
sheet/ice stream model, Earth Planet. Sci. Lett., 295, 451–461,
https://doi.org/10.1016/j.epsl.2010.04.025, 2010.
Pittard, M. L., Galton-Fenzi, B. K., Roberts, J. L., and Watson, C. S.:
Organization of ice flow by localized regions of elevated geothermal heat
flux, Geophys. Res. Lett., 43, 3342–3350, https://doi.org/10.1002/2016GL068436, 2016.
Pollard, D., DeConto, R. M., and Nyblade, A. A.: Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux, Global Planet. Change, 49, 63–74, https://doi.org/10.1016/j.gloplacha.2005.05.003, 2005.
Price, P. B., Nagornov, O. V., Bay, R., Chirkin, D., He, Y., Miocinovic, P.,
Richards, A., Woschnagg, K., Koci, B., and Zagorodnov, V.: Temperature
profile for glacial ice at the South Pole: Implications for life in a nearby
subglacial lake, P. Natl. Acad. Sci. USA, 99, 7844–7847, https://doi.org/10.1073/pnas.082238999, 2002
Raymond, C. F.: Deformation in the vicinity of ice divides, J. Glaciol., 29,
357–373, https://doi.org/10.1017/S0022143000030288, 1983.
Reeves, C. R. and Rowe, J. E.: Genetic Algorithms: Principles and
Perspectives. A Guide to GA Theory, Kluwer Academic Publishers, Boston,
USA, 2002.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice flow of the Antarctic Ice
Sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336, 2011.
Risk, G. F. and Hochstein, R.: Heat flow at Arrival Heights, Ross Island,
Antarctica, New Zeal. J. Geol. Geop., 17, 629–644,
https://doi.org/10.1080/00288306.1973.10421586, 1974.
Ritz, C., Rommelaere, V., and Dumas, C.: Modeling the evolution of Antarctic
ice sheet over the last 420,000 years: Implications for altitude changes in
the Vostok region, J. Geophys. Res.-Atmos., 106, 31943–31964,
https://doi.org/10.1029/2001JD900232, 2001.
Robin, G. de Q.: Ice movement and temperature distribution in glaciers and
ice sheets, J. Glaciol., 2, 523–532, https://doi.org/10.3189/002214355793702028, 1955.
Salamatin, A. N., Vostretsov R. N., Petit J. R., Lipenkov, V. Y. and Barkov,
N. I.: Geofisicheskiye i paleoklimaticheskie prilozheniya sostavnogo
temperaturnogo profilya iz glubokoi skvazhyni na stantsii Vostok (Antaktida)
[Geophysical and palaeoclimatic implications of the stacked temperature
profile from the deep borehole at Vostok station, Antarctica], Mater.
Glyatsiol. Issled., 85, 233–240, 1998a (in Russian with English summary).
Salamatin, A. N., Lipenkov, V. Y., Barkov, N. I., Jouzel, J., Petit, J. R., and
Raynaud, D.: Ice core age dating and paleothermometer calibration based on
isotope and temperature profiles from deep boreholes at Vostok Station (East
Antarctica), J. Geophys. Res., 103, 8963–8977, https://doi.org/10.1029/97JD02253,
1998b.
Seroussi, H., Ivins, E. R., Wiens D. A., and Bondzio J.: Influence of a West Antarctic mantle plume on ice sheet basal conditions. J Geophys. Res.-Sol.
Ea., 122, 7127–7155, https://doi.org/10.1002/2017jb014423, 2017.
Shapiro, N. M. and Ritzwoller, M. H.: Inferring surface heat flux
distributions guided by a global seismic model: particular application to
Antarctica, Earth Planet. Sc. Lett., 223, 213–224,
https://doi.org/10.1016/j.epsl.2004.04.011, 2004.
Shen, W., Wiens, D., Lloyd, A., and Nyblade, A.: A geothermal heat flux map
of Antarctica empirically constrained by seismic structure, Geophys. Res.
Lett., 47, e2020GL086955, https://doi.org/10.1029/2020GL086955, 2020.
Sigl, M., Fudge, T. J., Winstrup, M., Cole-Dai, J., Ferris, D., McConnell, J. R., Taylor, K. C., Welten, K. C., Woodruff, T. E., Adolphi, F., Bisiaux, M., Brook, E. J., Buizert, C., Caffee, M. W., Dunbar, N. W., Edwards, R., Geng, L., Iverson, N., Koffman, B., Layman, L., Maselli, O. J., McGwire, K., Muscheler, R., Nishiizumi, K., Pasteris, D. R., Rhodes, R. H., and Sowers, T. A.: The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP), Clim. Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016, 2016.
Slawny, K. R., Johnson, J. A., Mortensen, N. B., Gibson, C. J., Goetz, J. J.,
Shturmakov, A. J., Lebar, D. A., and Wendricks, A. W.: Production drilling at
WAIS Divide, Ann. Glaciol., 55, 147–155, https://doi.org/10.3189/2014AoG68A018,
2014.
Staffelbach, T., Stauffer, B., Sigg, A., and Oeschger, H.: CO2
measurements from polar ice cores: more data from different sites, Tellus,
43B, 91–96, https://doi.org/10.3402/tellusb.v43i2.15251, 1991.
Ueda, H.: Byrd Station drilling 1966–69, Ann. Glaciol., 47, 24–27, https://doi.org/10.3189/172756407786857631, 2007.
Ueda, H. T. and Garfield, D. E.: Deep core drilling at Byrd Station,
Antarctica, in: Proceedings of International Symp. on
Antarctic Glaciological Exploration (ISAGE), Hanover, New Hampshire, USA, September 3–7, 1968, edited by: Gow, A. J., Association of Scientific Hydrology, Cambridge, UK, 86, 53–62, 1970.
Ueltzhöffer, K. J., Bendel, V., Freitag, J., Kipfstuhl, S., Wagenbach,
D., Faria, S. H., and Garbe, C. S.: Distribution of air bubbles in the EDML
and EDC (Antarctica) ice cores, using a new method of automatic image
analysis, J. Glaciol., 56, 339–348, https://doi.org/10.3189/002214310791968511,
2010.
Van Wyk De Vries, M., Robert G., Bingham R. G., and Hein A. S.: A new volcanic
province: An inventory of subglacial volcanoes in West Antarctica, in:
Exploration of Subsurface Antarctica: Uncovering Past Changes and Modern Processes, edited by: Siegert, M. J., Jamieson, S. S. R., and White, D. A.,
Geol. Soc. London, Special Publications, 461, 231–248, https://doi.org/10.1144/SP461.7,
2017.
Van Liefferinge, B. and Pattyn, F.: Using ice-flow models to evaluate potential sites of million year-old ice in Antarctica, Clim. Past, 9, 2335–2345, https://doi.org/10.5194/cp-9-2335-2013, 2013.
Van Liefferinge, B., Pattyn, F., Cavitte, M. G. P., Karlsson, N. B., Young, D. A., Sutter, J., and Eisen, O.: Promising Oldest Ice sites in East Antarctica based on thermodynamical modelling, The Cryosphere, 12, 2773–2787, https://doi.org/10.5194/tc-12-2773-2018, 2018.
Vasiliev, N. I., Talalay, P. G., and Vostok Deep Ice Core Drilling Parties: Twenty Years of Drilling the Deepest Hole in Ice, Sci. Dril., 11, 41–45, https://doi.org/10.2204/iodp.sd.11.05.2011, 2011.
Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A., Vinther, B., and Wolff, E. W.: The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years, Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, 2013.
Vittuari, L., Vincent, C., Frezzotti, M., Mancini, F., Gandolfi, S.,
Bitelli, G., and Capra, A.: Space geodesy as a tool for measuring ice surface
velocity in the Dome C region and along the ITASE traverse, Ann. Glaciol.,
39, 402–408, https://doi.org/10.3189/172756404781814627, 2004.
Wexler, H.: Growth and thermal structure of the deep ice in Byrd Land,
Antarctica, J. Glaciol., 3, 1075–1087, https://doi.org/10.1017/S0022143000017482,
1961.
WAIS Divide Project Members: Onset of deglacial warming in West Antarctica
driven by local orbital forcing, Nature, 500, 440–444, https://doi.org/10.1038/nature12376, 2013.
Wendt, J., Dietrich, R., Fritsche, M., Wendt, A., Yuskevich, A., Kokhanov,
A., Senatorov, A. Lukin, V., Shibuya K., and Doi, K.: Geodetic observations
of ice flow velocities over the southern part of subglacial Lake Vostok,
Antarctica, and their glaciological implications, Geophys. J. Int., 166,
991–998, https://doi.org/10.1111/j.1365-246X.2006.03061.x, 2006.
Wesche, C., Eisen, O., Oerter, H., Schulte, D., and Steinhage, D.: Surface
topography and ice flow in the vicinity of the EDML deep-drilling site,
Antarctica, J. Glaciol., 53, 442–448, https://doi.org/10.3189/002214307783258512, 2007.
Whillans, I. M.: The equation of continuity and its application to the ice
sheet near ”Byrd” Station, Antarctica, J. Glaciol., 18, 359–371, https://doi.org/10.3189/S0022143000021055, 1977.
Whillans, I. M.: Ice flow along the Byrd Station strain network, Antarctica,
J. Glaciol., 24, 15–28, https://doi.org/10.3189/S0022143000014611, 1979.
Wilhelms, F., Miller, H., Gerasimoff, M. D., Drücker, C., Frenzel, A.,
Fritzsche, D., Grobe, H., Hansen, S. B., Hilmarsson, S.Æ., Hoffmann, G.,
Hörnby, K., Jaeschke, A., Jakobsdóttir, S. S., Juckschat, P.,
Karsten, A., Karsten, L., Kaufmann, P. R., Karlin, T., Kohlberg, E., Kleffel,
G., Lambrecht, A., Lambrecht, A., Lawer, G., Schärmeli, I., Schmitt, J.,
Sheldon, S. G., Takata, M., Trenke, M., Twarloh, B., Valero-Delgado, F., and
Wilhelms-Dick, D.: The EPICA Dronning Maud Land deep drilling operation,
Ann. Glaciol., 55, 355–366, https://doi.org/10.3189/2014AoG68A189, 2014.
Yen, Y.-C.: Review of thermal properties of snow, ice and see ice, CRREL Rep., vol. 81, 27 pp., 1981.
Zagorodnov, V., Nagornov, O., Scambos, T. A., Muto, A., Mosley-Thompson, E., Pettit, E. C., and Tyuflin, S.: Borehole temperatures reveal details of 20th century warming at Bruce Plateau, Antarctic Peninsula, The Cryosphere, 6, 675–686, https://doi.org/10.5194/tc-6-675-2012, 2012.
Zotikov, I. A.: Izmerenie geotermicheskogo potoka tepla v Antarktide
[Measurement of the geothermal heat flow in Antarctica], Sovetskaia
antarkticheskaia ekspeditsiia, Informatsionnyi biulleten [Soviet Antarctic
Expedition, Information Bulletin] 29, 30–32, 1961 (in Russian).
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(8202 KB) - Full-text XML