Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
TC | Articles | Volume 14, issue 11
The Cryosphere, 14, 3829–3842, 2020
https://doi.org/10.5194/tc-14-3829-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 14, 3829–3842, 2020
https://doi.org/10.5194/tc-14-3829-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 09 Nov 2020

Research article | 09 Nov 2020

Sub-permafrost methane seepage from open-system pingos in Svalbard

Andrew J. Hodson et al.

Related authors

Numerical modelling of permafrost spring discharge and open-system pingo formation induced by basal permafrost aggradation
Mikkel Toft Hornum, Andrew Jonathan Hodson, Søren Jessen, Victor Bense, and Kim Senger
The Cryosphere, 14, 4627–4651, https://doi.org/10.5194/tc-14-4627-2020,https://doi.org/10.5194/tc-14-4627-2020, 2020
Short summary
Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?
Mark J. Hopwood, Dustin Carroll, Thorben Dunse, Andy Hodson, Johnna M. Holding, José L. Iriarte, Sofia Ribeiro, Eric P. Achterberg, Carolina Cantoni, Daniel F. Carlson, Melissa Chierici, Jennifer S. Clarke, Stefano Cozzi, Agneta Fransson, Thomas Juul-Pedersen, Mie H. S. Winding, and Lorenz Meire
The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020,https://doi.org/10.5194/tc-14-1347-2020, 2020
Short summary
Pressure and inertia sensing drifters for glacial hydrology flow path measurements
Andreas Alexander, Maarja Kruusmaa, Jeffrey A. Tuhtan, Andrew J. Hodson, Thomas V. Schuler, and Andreas Kääb
The Cryosphere, 14, 1009–1023, https://doi.org/10.5194/tc-14-1009-2020,https://doi.org/10.5194/tc-14-1009-2020, 2020
Short summary
Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet
Joseph M. Cook, Andrew J. Tedstone, Christopher Williamson, Jenine McCutcheon, Andrew J. Hodson, Archana Dayal, McKenzie Skiles, Stefan Hofer, Robert Bryant, Owen McAree, Andrew McGonigle, Jonathan Ryan, Alexandre M. Anesio, Tristram D. L. Irvine-Fynn, Alun Hubbard, Edward Hanna, Mark Flanner, Sathish Mayanna, Liane G. Benning, Dirk van As, Marian Yallop, James B. McQuaid, Thomas Gribbin, and Martyn Tranter
The Cryosphere, 14, 309–330, https://doi.org/10.5194/tc-14-309-2020,https://doi.org/10.5194/tc-14-309-2020, 2020
Short summary
Geochemical signatures of pingo ice and its origin in Grøndalen, west Spitsbergen
Nikita Demidov, Sebastian Wetterich, Sergey Verkulich, Aleksey Ekaykin, Hanno Meyer, Mikhail Anisimov, Lutz Schirrmeister, Vasily Demidov, and Andrew J. Hodson
The Cryosphere, 13, 3155–3169, https://doi.org/10.5194/tc-13-3155-2019,https://doi.org/10.5194/tc-13-3155-2019, 2019
Short summary

Related subject area

Discipline: Frozen ground | Subject: Frozen ground hydrology
Invited Perspective: What Lies Beneath a Changing Arctic?
Jeffrey M. McKenzie, Barret L. Kurylyk, Michelle A. Walvoord, Victor F. Bense, Daniel Fortier, Chris Spence, and Christophe Grenier
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-132,https://doi.org/10.5194/tc-2020-132, 2020
Revised manuscript accepted for TC
Short summary
Soil moisture and hydrology projections of the permafrost region – a model intercomparison
Christian G. Andresen, David M. Lawrence, Cathy J. Wilson, A. David McGuire, Charles Koven, Kevin Schaefer, Elchin Jafarov, Shushi Peng, Xiaodong Chen, Isabelle Gouttevin, Eleanor Burke, Sarah Chadburn, Duoying Ji, Guangsheng Chen, Daniel Hayes, and Wenxin Zhang
The Cryosphere, 14, 445–459, https://doi.org/10.5194/tc-14-445-2020,https://doi.org/10.5194/tc-14-445-2020, 2020
Short summary

Cited articles

Anthony, K. M. W., Anthony, P., Grosse, G., and Chanton, J.: Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers, Nat. Geosci., 5, 419–426, 2012. 
Bense, V. F., Kooi, H., Ferguson, G., and Read, T.: Permafrost degradation as a control on hydrogeological regime shifts in a warming climate, J. Geophys. Res.-Earth Surf., 117, 1–18, https://doi.org/10.1029/2011JF002143, 2012. 
Betlem, P., Senger, K., and Hodson, A.: 3D thermobaric modelling of the gas hydrate stability zone onshore central Spitsbergen, Arctic Norway, Marine and Petroleum Geology, 100, 246–262, 2019. 
Bischoff, J. L., Juliá, R., Shanks III, W. C., and Rosenbauer, R. J.: Karstification without carbonic acid: Bedrock dissolution by gypsum-driven dedolomitization, Geology, 22, 95–998, 1994. 
Braathen, A., Bælum, K., Christiansen, H. H., Dahl, T., Eiken, O., Elvebakk, H., Hansen, F., Hanssen, T. H., Jochmann, M., Johansen, T. A., Johnsen, H., Larsen, L., Lie, T., Mertes, J., Mørk, A., Mørk, M. B., Nemec, W. J., Olaussen, S., Oye, V., Rød, K., Titlestad, G. O., Tveranger, J., and Vagle, K. Longyearbyen CO2 lab of Svalbard, Norway – first assessment of the sedimentary succession for CO2 storage, Norwegian J. Geol., 92, 353–376, 2012. 
Publications Copernicus
Short summary
Methane stored below permafrost is an unknown quantity in the Arctic greenhouse gas budget. In coastal areas with rising sea levels, much of the methane seeps into the sea and is removed before it reaches the atmosphere. However, where land uplift outpaces rising sea levels, the former seabed freezes, pressurising methane-rich groundwater beneath, which then escapes via permafrost seepages called pingos. We describe this mechanism and the origins of the methane discharging from Svalbard pingos.
Methane stored below permafrost is an unknown quantity in the Arctic greenhouse gas budget. In...
Citation