Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-3707-2020
https://doi.org/10.5194/tc-14-3707-2020
Research article
 | 
05 Nov 2020
Research article |  | 05 Nov 2020

High-resolution simulations of interactions between surface ocean dynamics and frazil ice

Agnieszka Herman, Maciej Dojczman, and Kamila Świszcz

Related authors

Wind wave and water level dataset for Hornsund, Svalbard (2013–2021)
Zuzanna M. Swirad, Mateusz Moskalik, and Agnieszka Herman
Earth Syst. Sci. Data, 15, 2623–2633, https://doi.org/10.5194/essd-15-2623-2023,https://doi.org/10.5194/essd-15-2623-2023, 2023
Short summary
Spatial characteristics of frazil streaks in the Terra Nova Bay Polynya from high-resolution visible satellite imagery
Katarzyna Bradtke and Agnieszka Herman
The Cryosphere, 17, 2073–2094, https://doi.org/10.5194/tc-17-2073-2023,https://doi.org/10.5194/tc-17-2073-2023, 2023
Short summary
Winter atmospheric boundary layer observations over sea ice in the coastal zone of the Bay of Bothnia (Baltic Sea)
Marta Wenta, David Brus, Konstantinos Doulgeris, Ville Vakkari, and Agnieszka Herman
Earth Syst. Sci. Data, 13, 33–42, https://doi.org/10.5194/essd-13-33-2021,https://doi.org/10.5194/essd-13-33-2021, 2021
Short summary
Wave energy attenuation in fields of colliding ice floes – Part 1: Discrete-element modelling of dissipation due to ice–water drag
Agnieszka Herman, Sukun Cheng, and Hayley H. Shen
The Cryosphere, 13, 2887–2900, https://doi.org/10.5194/tc-13-2887-2019,https://doi.org/10.5194/tc-13-2887-2019, 2019
Short summary
Wave energy attenuation in fields of colliding ice floes – Part 2: A laboratory case study
Agnieszka Herman, Sukun Cheng, and Hayley H. Shen
The Cryosphere, 13, 2901–2914, https://doi.org/10.5194/tc-13-2901-2019,https://doi.org/10.5194/tc-13-2901-2019, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Ocean Interactions
Two-dimensional numerical simulations of mixing under ice keels
Sam De Abreu, Rosalie M. Cormier, Mikhail G. Schee, Varvara E. Zemskova, Erica Rosenblum, and Nicolas Grisouard
The Cryosphere, 18, 3159–3176, https://doi.org/10.5194/tc-18-3159-2024,https://doi.org/10.5194/tc-18-3159-2024, 2024
Short summary
Seasonal and diurnal variability of sub-ice platelet layer thickness in McMurdo Sound from electromagnetic induction sounding
Gemma M. Brett, Greg H. Leonard, Wolfgang Rack, Christian Haas, Patricia J. Langhorne, Natalie J. Robinson, and Anne Irvin
The Cryosphere, 18, 3049–3066, https://doi.org/10.5194/tc-18-3049-2024,https://doi.org/10.5194/tc-18-3049-2024, 2024
Short summary
The role of upper-ocean heat content in the regional variability of Arctic sea ice at sub-seasonal timescales
Elena Bianco, Doroteaciro Iovino, Simona Masina, Stefano Materia, and Paolo Ruggieri
The Cryosphere, 18, 2357–2379, https://doi.org/10.5194/tc-18-2357-2024,https://doi.org/10.5194/tc-18-2357-2024, 2024
Short summary
A method for constructing directional surface wave spectra from ICESat-2 altimetry
Momme C. Hell and Christopher Horvat
The Cryosphere, 18, 341–361, https://doi.org/10.5194/tc-18-341-2024,https://doi.org/10.5194/tc-18-341-2024, 2024
Short summary
A model for the Arctic mixed layer circulation under a summertime lead: implications for the near-surface temperature maximum formation
Alberto Alvarez
The Cryosphere, 17, 3343–3361, https://doi.org/10.5194/tc-17-3343-2023,https://doi.org/10.5194/tc-17-3343-2023, 2023
Short summary

Cited articles

Belcher, S., Grant, A., Hanley, K., Fox-Kemper, B., Van Roekel, L., Sullivan, P., Large, W., Brown, A., Hines, A., Calvert, D., Rutgersson, A., Pettersson, H., Bidlot, J.-R., Janssen, P., and Polton, J.: A global perspective on Langmuir turbulence in the ocean surface boundary layer, Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932, 2012. a, b, c, d, e
Biggs, N. and Willmott, A.: Polynya flux model solutions incorporating parameterization for the consolidated new ice, J. Fluid Mech., 408, 179–204, https://doi.org/10.1017/S0022112099007673, 2000. a
Botte, V. and Mansutti, D.: A numerical estimate of the plankton-induced sea surface tension effects in a Langmuir circulation, Mathematics and Computer Simul., 82, 2916–2928, https://doi.org/10.1016/j.matcom.2012.07.014, 2012. a
Canuto, V., Howard, A., Cheng, Y., and Dubovikov, M.: Ocean turbulence. Part I: One-point closure model – momentum and heat vertical diffusivities, J. Phys. Oceanogr., 31, 1413–1426, https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2, 2001. a
Chamecki, M., Chor, T., Yang, D., and Meneveau, C.: Material transport in the ocean mixed layer: Recent developments enabled by large eddy simulation, Rev. Geophysics, 57, 1338–1371, https://doi.org/10.1029/2019RG000655, 2019. a, b, c, d, e, f
Download
Short summary
Under typical conditions favorable for sea ice formation in many regions (strong wind and waves, low air temperature), ice forms not at the sea surface but within the upper, turbulent layer of the ocean. Although interactions between ice and ocean dynamics are very important for the evolution of sea ice cover, many aspects of them are poorly understood. We use a numerical model to analyze three-dimensional water circulation and ice transport and show that ice strongly modifies that circulation.