Research article
05 Nov 2020
Research article | 05 Nov 2020
High-resolution simulations of interactions between surface ocean dynamics and frazil ice
Agnieszka Herman et al.
Related authors
Related subject area
Experimental evidence for a universal threshold characterizing wave-induced sea ice break-up
Joey J. Voermans, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Aleksey Marchenko, Clarence O. Collins III, Mohammed Dabboor, Graig Sutherland, and Alexander V. Babanin
The Cryosphere, 14, 4265–4278, https://doi.org/10.5194/tc-14-4265-2020,https://doi.org/10.5194/tc-14-4265-2020, 2020
Short summary
Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica
Lisa Thompson, Madison Smith, Jim Thomson, Sharon Stammerjohn, Steve Ackley, and Brice Loose
The Cryosphere, 14, 3329–3347, https://doi.org/10.5194/tc-14-3329-2020,https://doi.org/10.5194/tc-14-3329-2020, 2020
Short summary
Towards a coupled model to investigate wave–sea ice interactions in the Arctic marginal ice zone
Guillaume Boutin, Camille Lique, Fabrice Ardhuin, Clément Rousset, Claude Talandier, Mickael Accensi, and Fanny Girard-Ardhuin
The Cryosphere, 14, 709–735, https://doi.org/10.5194/tc-14-709-2020,https://doi.org/10.5194/tc-14-709-2020, 2020
Short summary
Responses of sub-ice platelet layer thickening rate and frazil-ice concentration to variations in ice-shelf water supercooling in McMurdo Sound, Antarctica
Chen Cheng, Adrian Jenkins, Paul R. Holland, Zhaomin Wang, Chengyan Liu, and Ruibin Xia
The Cryosphere, 13, 265–280, https://doi.org/10.5194/tc-13-265-2019,https://doi.org/10.5194/tc-13-265-2019, 2019
Short summary
Cited articles
Belcher, S., Grant, A., Hanley, K., Fox-Kemper, B., Van Roekel, L., Sullivan,
P., Large, W., Brown, A., Hines, A., Calvert, D., Rutgersson, A., Pettersson,
H., Bidlot, J.-R., Janssen, P., and Polton, J.: A global perspective on
Langmuir turbulence in the ocean surface boundary layer, Geophys. Res.
Lett., 39, L18605,
https://doi.org/10.1029/2012GL052932, 2012.
a,
b,
c,
d,
e
Botte, V. and Mansutti, D.: A numerical estimate of the plankton-induced sea
surface tension effects in a Langmuir circulation, Mathematics and Computer
Simul., 82, 2916–2928,
https://doi.org/10.1016/j.matcom.2012.07.014, 2012.
a
Canuto, V., Howard, A., Cheng, Y., and Dubovikov, M.: Ocean turbulence. Part
I: One-point closure model – momentum and heat vertical diffusivities,
J. Phys. Oceanogr., 31, 1413–1426,
https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2, 2001.
a
Chamecki, M., Chor, T., Yang, D., and Meneveau, C.: Material transport in the
ocean mixed layer: Recent developments enabled by large eddy simulation,
Rev. Geophysics, 57, 1338–1371,
https://doi.org/10.1029/2019RG000655, 2019.
a,
b,
c,
d,
e,
f
Chen, B., Yang, D., Meneveau, C., and Chamecki, M.: Effects of swell on
transport and dispersion of oil plumes within the ocean mixed layer, J.
Geophys. Res., 121, 3564–3578,
https://doi.org/10.1002/2015JC011380, 2016.
a
Chor, T., Yang, D., Meneveau, C., and Chamecki, M.: A turbulence velocity scale
for predicting the fate of buoyant materials in the oceanic mixed layer,
Geophys. Res. Lett., 45, 11817–11826,
https://doi.org/10.1029/2018GL080296,
2018a.
a,
b
Chor, T., Yang, D., Meneveau, C., and Chamecki, M.: Preferential concentration
of noninertial buoyant particles in the ocean mixed layer under free
convection, Phys. Rev. Fluids, 3, 064501,
https://doi.org/10.1103/PhysRevFluids.3.064501, 2018b.
a,
b,
c
Covello, V., Abbà, A., Bonaventura, L., and Valdettaro, L.: Multiphase
equations suitable for the numerical simulation of ice production in ocean,
in: Proc. 9th Int. Conf. on Multiphase Flow, 22–27 May 2016, Firenze, Italy,
2016. a
Daly, S.: Frazil ice dynamics, Tech. Rep. Rep. No. 84-1, U.S. Army Corps of
Engineers, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, USA, 1984. a
De Carolis, G., Olla, P., and Pignagnoli, L.: Effective viscosity of grease
ice in linearized gravity waves, J. Fluid Mech., 535, 369–381,
https://doi.org/10.1017/S002211200500474X, 2005.
a
Dethleff, D., Kempema, E., Koch, R., and Chubarenko, I.: On the helical flow of
Langmuir circulation – Approaching the process of suspension freezing,
Cold Regions Sci. Technol., 56, 50–57,
https://doi.org/10.1016/j.coldregions.2008.10.002, 2009.
a
Dmitrenko, I., Wegner, C., Kassens, H., Kirillov, S., Krumpen, T., Heinemann,
G., Helbig, A., Schröder, D., Hölemann, J., Klagge, T., Tyshko, K., and
Busche, T.: Observations of supercooling and frazil ice formation in the
Laptev Sea coastal polynya, J. Geophys. Res., 115, C05015,
https://doi.org/10.1029/2009JC005798, 2010.
a
Drucker, R., Martin, S., and Moritz, R.: Observations of ice thickness and
frazil ice in the St. Lawrence Island polynya from satellite imagery,
upward looking sonar, and salinity/temperature moorings, J. Geophys. Res.,
108, 3149,
https://doi.org/10.1029/2001JC001213, 2003.
a,
b
Fan, Y., Yu, Z., Savelyev, I., Sullivan, P., Liang, J.-H., Haack, T., Terrill,
E., de Paolo, T., and Shearman, K.: The effect of Langmuir turbulence
under complex real oceanic and meteorological forcing, Ocean Model., 149,
101601,
https://doi.org/10.1016/j.ocemod.2020.101601, 2020.
a
Heorton, H., Radia, N., and Feltham, D.: A model of sea ice formation in leads
and polynyas, J. Phys. Oceanogr., 47, 1701–1718,
https://doi.org/10.1175/JPO-D-16-0224.1, 2017.
a,
b,
c,
d
Holland, P. and Feltham, D.: Frazil dynamics and precipitation in a water
column with depth-dependent supercooling, J. Fluid Mech., 530, 101–124,
https://doi.org/10.1017/S002211200400285X, 2005.
a,
b,
c,
d,
e,
f
Ito, M., Ohshima, K., Fukamachi, Y., Hirano, D., Mahoney, A., Jones, J.,
Takatsuka, T., and Eicken, H.: Favorable conditions for suspension freezing
in an Arctic coastal polynya, J. Geophys. Res., 124, 8701–8719,
https://doi.org/10.1029/2019JC015536, 2019.
a,
b
Kämpf, J. and Backhaus, J.: Shallow, brine-driven free convection in polar
oceans: Nonhydrostatic numerical process studies, J. Geophys. Res., 103,
5577–5593,
https://doi.org/10.1029/97JC02680, 1998.
a
Kämpf, J. and Backhaus, J.: Ice–ocean interactions during shallow
convection under conditions of steady winds: three-dimensional numerical
studies, Deep-Sea Res. II, 46, 1335–1355, 1999. a
Kolev, N.: Drag, lift, and virtual mass
forces, in: Multiphase Flow Dynamics 2, 31–85, Springer, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-20598-9_2, 2011.
a
Kukulka, T. and Brunner, K.: Passive buoyant tracers in the ocean surface
boundary layer: 1. Influence of equilibrium wind-waves on vertical
distributions, J. Geophys. Res., 120, 3837–3858,
https://doi.org/10.1002/2014JC010487,
2015.
a
Kukulka, T., Proskurowski, G., Morét-Ferguson, S., Meyer, D., and Law, K.:
The effect of wind mixing on the vertical distribution of buoyant plastic
debris, Geophys. Res. Lett., 39, L07601,
https://doi.org/10.1029/2012GL051116, 2012.
a
Li, M., Garrett, C., and Skyllingstad, E.: A regime diagram for classifying
turbulent large eddies in the upper ocean, Deep-Sea Res. I, 52, 259–278,
https://doi.org/10.1016/j.dsr.2004.09.004, 2005.
a
McFarlane, V., Loewen, M., and Hicks, F.: Laboratory measurements of the rise
velocity of frazil ice particles, Cold Regions Sci. Tech., 106–107,
120–130,
https://doi.org/10.1016/j.coldregions.2014.06.009, 2014.
a
McFarlane, V., Loewen, M., and Hicks, F.: Measurements of the evolution of
frazil ice particle size distributions, Cold Regions Sci. Tech., 120, 45–55,
https://doi.org/10.1016/j.coldregions.2015.09.001, 2015.
a
McWilliams, J., Sullivan, P., and Moeng, C.-H.: Langmuir turbulence in the
ocean, J. Fluid Mech., 334, 1–30,
https://doi.org/10.1017/S0022112096004375, 1997.
a,
b,
c,
d
McWilliams, J., Restrepo, J., and Lane, E.: An asymptotic theory for the
interaction of waves and currents in coastal waters, J. Fluid Mech., 511,
135–178,
https://doi.org/10.1017/S0022112004009358, 2004.
a
Morales Maqueda, M., Willmott, A., and Biggs, N.: Polynya dynamics: A
review of observations and modeling, Rev. Geophys, 42, RG1004,
https://doi.org/10.1029/2002RG000116, 2004.
a
Newyear, K. and Martin, S.: A comparison of theory and laboratory measurements
of wave propagation and attenuation in grease ice, J. Geophys. Res., 102,
25091–25099,
https://doi.org/10.1029/97JC02091, 1997.
a,
b
Shchepetkin, A. and McWilliams, J.: The regional oceanic modeling system
(ROMS): a split-explicit, free-surface, topography-following-coordinate
oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
a
Sullivan, P., Romero, L., McWilliams, J., and Melville, W.: Transient evolution
of Langmuir turbulence in ocean boundary layers driven by hurricane winds
and waves, J. Phys. Oceanogr., 42, 1959–1980,
https://doi.org/10.1175/JPO-D-12-025.1,
2012.
a
Thompson, L., Smith, M., Thomson, J., Stammerjohn, S., Ackley, S., and Loose, B.: Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica, The Cryosphere, 14, 3329–3347,
https://doi.org/10.5194/tc-14-3329-2020, 2020.
a,
b
Uchiyama, Y., McWilliams, J., and Shchepetkin, A.: Wave–current interaction in
an oceanic circulation model with a vortex-force formalism: Application to
the surf zone, Ocean Model., 34, 16–35,
https://doi.org/10.1016/j.ocemod.2010.04.002, 2010.
a
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and
Maqueda, M. M.: Simulating the mass balance and salinity of Arctic and
Antarctic sea ice. 1. Model description and validation, Ocean Model.,
27, 33–53,
https://doi.org/10.1016/j.ocemod.2008.10.005, 2009.
a
Van Roekel, L., Fox-Kemper, B., Sullivan, P., Hamlington, P., and Haney, S.:
The form and orientation of Langmuir cells for misaligned winds and waves, J.
Geophys. Res., 117, C05001,
https://doi.org/10.1029/2011JC007516, 2012.
a
Warner, J., Sherwood, C., Arango, H., and Signell, R.: Performance of four
turbulence closure models implemented using a generic length scale method,
Ocean Model., 8, 81–113,
https://doi.org/10.1016/j.ocemod.2003.12.003, 2005.
a,
b
Weeks, W. and Ackley, S.: The growth, structure and properties of sea ice,
CRREL Monograph 82-1, Hanover, New Hampshire, USA, 144 pp., 1982.
a,
b
Wilchinsky, A., Heorton, H., and Feltham, D.: Study of the impact of ice
formation in leads upon the sea ice pack mass balance using a new frazil and
grease ice parameterization, J. Phys. Oceanogr., 45, 2025–2047,
https://doi.org/10.1175/JPO-D-14-0184.1, 2015.
a
Yang, D., Chamecki, M., and Meneveau, C.: Inhibition of oil plume dilution in
Langmuir ocean circulation, Geophys. Res. Lett., 41, 1632–1638,
https://doi.org/10.1002/2014GL059284, 2014.
a,
b,
c,
d
Yang, D., Cheng, B., Chamecki, M., and Meneveau, C.: Oil plumes and dispersion
in Langmuir, upper-ocean turbulence: Large-eddy simulations and
K-profile parameterization, J. Geophys. Res., 120, 4729–4759,
https://doi.org/10.1002/2014JC010542, 2015.
a,
b,
c