Articles | Volume 14, issue 9
https://doi.org/10.5194/tc-14-2949-2020
https://doi.org/10.5194/tc-14-2949-2020
Research article
 | 
10 Sep 2020
Research article |  | 10 Sep 2020

A model for interaction between conduits and surrounding hydraulically connected distributed drainage based on geomorphological evidence from Keewatin, Canada

Emma L. M. Lewington, Stephen J. Livingstone, Chris D. Clark, Andrew J. Sole, and Robert D. Storrar

Related authors

Calving front positions for Greenland outlet glaciers (2002–2021): a spatially extensive seasonal record and benchmark dataset for algorithm validation
Xi Lu, Liming Jiang, Daan Li, Yi Liu, Andrew Sole, and Stephen John Livingstone
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-304,https://doi.org/10.5194/essd-2025-304, 2025
Preprint under review for ESSD
Short summary
The Greenland-Ice-Sheet evolution over the last 24,000 years: insights from model simulations evaluated against ice-extent markers
Tancrède P. M. Leger, Jeremy C. Ely, Christopher D. Clark, Sarah L. Bradley, Rosie E. Archer, and Jiang Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1616,https://doi.org/10.5194/egusphere-2025-1616, 2025
Short summary
Ice flow dynamics of the northwestern Laurentide Ice Sheet during the last deglaciation
Benjamin J. Stoker, Helen E. Dulfer, Chris R. Stokes, Victoria H. Brown, Christopher D. Clark, Colm Ó Cofaigh, David J. A. Evans, Duane Froese, Sophie L. Norris, and Martin Margold
The Cryosphere, 19, 869–910, https://doi.org/10.5194/tc-19-869-2025,https://doi.org/10.5194/tc-19-869-2025, 2025
Short summary
Reconstructing dynamics of the Baltic Ice Stream Complex during deglaciation of the Last Scandinavian Ice Sheet
Izabela Szuman, Jakub Z. Kalita, Christiaan R. Diemont, Stephen J. Livingstone, Chris D. Clark, and Martin Margold
The Cryosphere, 18, 2407–2428, https://doi.org/10.5194/tc-18-2407-2024,https://doi.org/10.5194/tc-18-2407-2024, 2024
Short summary
A Greenland-wide empirical reconstruction of paleo ice sheet retreat informed by ice extent markers: PaleoGrIS version 1.0
Tancrède P. M. Leger, Christopher D. Clark, Carla Huynh, Sharman Jones, Jeremy C. Ely, Sarah L. Bradley, Christiaan Diemont, and Anna L. C. Hughes
Clim. Past, 20, 701–755, https://doi.org/10.5194/cp-20-701-2024,https://doi.org/10.5194/cp-20-701-2024, 2024
Short summary

Cited articles

Alley, R. B., Cuffey, K. M., Evenseon, E. B., Strasser, J. C., Lawson, D. E., and Larson, G. J.: How glaciers entrain and transport basal sediment : physical constraints, Quatern. Sci. Rev., 16, 1017–1038,1997. 
Alley, R. B., Cuffey, K. M., and Zoet, L. K.: Glacial erosion: status and outlook, Ann. Glaciol., 60, 1–13, 2019. 
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M. P., Ryser, C., Hawley, R. L. and Neumann, T. A. : Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514, 80–83, 2014. 
Aylsworth, J. M. and Shilts, W. W.: Glacial features around the Keewatin Ice Divide: Districts of Mackenzie and Keewatin, Geological Survey of Canada, Map 24-1987, 1 : 1 000 000, 1989. 
Aylsworth, J. M., Shilts, W. W., Russel, H. A. J., and Pyne, D. M.: Eskers around the Keewatin Ice Divide: Northwest Territories and Nunavut, Geological Survey of Canada, Open File, 7047, 2012. 
Download
Short summary
We map visible traces of subglacial meltwater flow across Keewatin, Canada. Eskers are commonly observed to form within meltwater corridors up to a few kilometres wide, and we interpret different traces to have formed as part of the same integrated drainage system. In our proposed model, we suggest that eskers record the imprint of a central conduit while meltwater corridors represent the interaction with the surrounding distributed drainage system.
Share