Articles | Volume 14, issue 8
https://doi.org/10.5194/tc-14-2729-2020
https://doi.org/10.5194/tc-14-2729-2020
Research article
 | 
27 Aug 2020
Research article |  | 27 Aug 2020

Drivers for Atlantic-origin waters abutting Greenland

Laura C. Gillard, Xianmin Hu, Paul G. Myers, Mads Hvid Ribergaard, and Craig M. Lee

Related authors

Ocean circulation, sea ice, and productivity simulated in Jones Sound, Canadian Arctic Archipelago, between 2003–2016
Tyler Pelle, Paul G. Myers, Andrew Hamilton, Matthew Mazloff, Krista Soderlund, Lucas Beem, Donald D. Blankenship, Cyril Grima, Feras Habbal, Mark Skidmore, and Jamin S. Greenbaum
EGUsphere, https://doi.org/10.5194/egusphere-2024-3751,https://doi.org/10.5194/egusphere-2024-3751, 2024
Short summary
Freshwater input from glacier melt outside Greenland alters modeled northern high-latitude ocean circulation
Jan-Hendrik Malles, Ben Marzeion, and Paul G. Myers
EGUsphere, https://doi.org/10.5194/egusphere-2024-1425,https://doi.org/10.5194/egusphere-2024-1425, 2024
Short summary
Predictive mapping of organic carbon stocks in surficial sediments of the Canadian continental margin
Graham Epstein, Susanna D. Fuller, Dipti Hingmire, Paul G. Myers, Angelica Peña, Clark Pennelly, and Julia K. Baum
Earth Syst. Sci. Data, 16, 2165–2195, https://doi.org/10.5194/essd-16-2165-2024,https://doi.org/10.5194/essd-16-2165-2024, 2024
Short summary
Underestimation of oceanic carbon uptake in the Arctic Ocean: ice melt as predictor of the sea ice carbon pump
Benjamin Richaud, Katja Fennel, Eric C. J. Oliver, Michael D. DeGrandpre, Timothée Bourgeois, Xianmin Hu, and Youyu Lu
The Cryosphere, 17, 2665–2680, https://doi.org/10.5194/tc-17-2665-2023,https://doi.org/10.5194/tc-17-2665-2023, 2023
Short summary
Introducing LAB60: A 1∕60° NEMO 3.6 numerical simulation of the Labrador Sea
Clark Pennelly and Paul G. Myers
Geosci. Model Dev., 13, 4959–4975, https://doi.org/10.5194/gmd-13-4959-2020,https://doi.org/10.5194/gmd-13-4959-2020, 2020
Short summary

Related subject area

Discipline: Other | Subject: Ocean Interactions
The macronutrient and micronutrient (iron and manganese) content of icebergs
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024,https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Ice mélange melt changes observed water column stratification at a tidewater glacier in Greenland
Nicole Abib, David A. Sutherland, Rachel Peterson, Ginny Catania, Jonathan D. Nash, Emily L. Shroyer, Leigh A. Stearns, and Timothy C. Bartholomaus
The Cryosphere, 18, 4817–4829, https://doi.org/10.5194/tc-18-4817-2024,https://doi.org/10.5194/tc-18-4817-2024, 2024
Short summary
Subglacial discharge effects on basal melting of a rotating, idealized ice shelf
Irena Vaňková, Xylar Asay-Davis, Carolyn Branecky Begeman, Darin Comeau, Alexander Hager, Matthew Hoffman, Stephen F. Price, and Jonathan Wolfe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2297,https://doi.org/10.5194/egusphere-2024-2297, 2024
Short summary
Ice-shelf freshwater triggers for the Filchner–Ronne Ice Shelf melt tipping point in a global ocean–sea-ice model
Matthew J. Hoffman, Carolyn Branecky Begeman, Xylar S. Asay-Davis, Darin Comeau, Alice Barthel, Stephen F. Price, and Jonathan D. Wolfe
The Cryosphere, 18, 2917–2937, https://doi.org/10.5194/tc-18-2917-2024,https://doi.org/10.5194/tc-18-2917-2024, 2024
Short summary
Fjord circulation induced by melting icebergs
Kenneth G. Hughes
The Cryosphere, 18, 1315–1332, https://doi.org/10.5194/tc-18-1315-2024,https://doi.org/10.5194/tc-18-1315-2024, 2024
Short summary

Cited articles

Aagaard, K. and Carmack, E. C.: The role of sea ice and other fresh water in the Arctic circulation, J. Geophys. Res.-Oceans, 94, 14 485–14 498, https://doi.org/10.1029/JC094iC10p14485, 1989. a
Aksenov, Y., Bacon, S., Coward, A. C., and Holliday, N. P.: Polar outflow from the Arctic Ocean: A high resolution model study, J. Marine Sys., 83, 14–37, https://doi.org/10.1016/j.jmarsys.2010.06.007, 2010. a
Amante, C. and Eakins, B.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, https://doi.org/10.7289/V5C8276M, 2009. a, b
An, L., Rignot, E., Elieff, S., Morlighem, M., Millan, R., Mouginot, J., Holland, D. M., Holland, D., and Paden, J.: Bed elevation of Jakobshavn Isbrae, West Greenland, from high-resolution airborne gravity and other data, Geophys. Res. Lett., 44, 3728–3736, https://doi.org/10.1002/2017GL073245, 2017. a, b
Arrigo, K. R., van Dijken, G. L., Castelao, R. M., Luo, H., Rennermalm, s. K., Tedesco, M., Mote, T. L., Oliver, H., and Yager, P. L.: Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters, Geophys. Res. Lett., 44, 6278–6285, https://doi.org/10.1002/2017GL073583, 2017. a
Download
Short summary
Greenland's glaciers in contact with the ocean drain the majority of the ice sheet (GrIS). Deep troughs along the shelf branch into fjords, connecting glaciers with ocean waters. The heat from the ocean entering deep troughs may then accelerate the mass loss. Onshore heat transport through troughs was investigated with an ocean model. Processes that drive the delivery of ocean heat respond differently by region to increasing GrIS meltwater, mean circulation, and filtering out of storms.