Articles | Volume 14, issue 6
https://doi.org/10.5194/tc-14-1989-2020
https://doi.org/10.5194/tc-14-1989-2020
Research article
 | 
18 Jun 2020
Research article |  | 18 Jun 2020

A quasi-annual record of time-transgressive esker formation: implications for ice-sheet reconstruction and subglacial hydrology

Stephen J. Livingstone, Emma L. M. Lewington, Chris D. Clark, Robert D. Storrar, Andrew J. Sole, Isabelle McMartin, Nico Dewald, and Felix Ng

Related authors

Reconstructing dynamics of the Baltic Ice Stream Complex during deglaciation of the Last Scandinavian Ice Sheet
Izabela Szuman, Jakub Z. Kalita, Christiaan R. Diemont, Stephen J. Livingstone, Chris D. Clark, and Martin Margold
The Cryosphere, 18, 2407–2428, https://doi.org/10.5194/tc-18-2407-2024,https://doi.org/10.5194/tc-18-2407-2024, 2024
Short summary
Seasonal evolution of the supraglacial drainage network at Humboldt Glacier, northern Greenland, between 2016 and 2020
Lauren D. Rawlins, David M. Rippin, Andrew J. Sole, Stephen J. Livingstone, and Kang Yang
The Cryosphere, 17, 4729–4750, https://doi.org/10.5194/tc-17-4729-2023,https://doi.org/10.5194/tc-17-4729-2023, 2023
Short summary
Subglacial lake activity beneath the ablation zone of the Greenland Ice Sheet
Yubin Fan, Chang-Qing Ke, Xiaoyi Shen, Yao Xiao, Stephen J. Livingstone, and Andrew J. Sole
The Cryosphere, 17, 1775–1786, https://doi.org/10.5194/tc-17-1775-2023,https://doi.org/10.5194/tc-17-1775-2023, 2023
Short summary
Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica
Peter A. Tuckett, Jeremy C. Ely, Andrew J. Sole, James M. Lea, Stephen J. Livingstone, Julie M. Jones, and J. Melchior van Wessem
The Cryosphere, 15, 5785–5804, https://doi.org/10.5194/tc-15-5785-2021,https://doi.org/10.5194/tc-15-5785-2021, 2021
Short summary
GIS dataset: geomorphological record of terrestrial-terminating ice streams, southern sector of the Baltic Ice Stream Complex, last Scandinavian Ice Sheet, Poland
Izabela Szuman, Jakub Z. Kalita, Marek W. Ewertowski, Chris D. Clark, Stephen J. Livingstone, and Leszek Kasprzak
Earth Syst. Sci. Data, 13, 4635–4651, https://doi.org/10.5194/essd-13-4635-2021,https://doi.org/10.5194/essd-13-4635-2021, 2021
Short summary

Related subject area

Discipline: Ice sheets | Subject: Geomorphology
History and dynamics of Fennoscandian Ice Sheet retreat, contemporary ice-dammed lake evolution, and faulting in the Torneträsk area, northwestern Sweden
Karlijn Ploeg and Arjen Peter Stroeven
EGUsphere, https://doi.org/10.5194/egusphere-2024-2486,https://doi.org/10.5194/egusphere-2024-2486, 2024
Short summary
Dynamical response of the southwestern Laurentide Ice Sheet to rapid Bølling–Allerød warming
Sophie L. Norris, Martin Margold, David J. A. Evans, Nigel Atkinson, and Duane G. Froese
The Cryosphere, 18, 1533–1559, https://doi.org/10.5194/tc-18-1533-2024,https://doi.org/10.5194/tc-18-1533-2024, 2024
Short summary
Ice flow dynamics of the northwestern Laurentide Ice Sheet during the last deglaciation
Benjamin J. Stoker, Helen E. Dulfer, Chris R. Stokes, Victoria H. Brown, Christopher D. Clark, Colm Ó Cofaigh, David J. A. Evans, Duane Froese, Sophie L. Norris, and Martin Margold
EGUsphere, https://doi.org/10.5194/egusphere-2024-137,https://doi.org/10.5194/egusphere-2024-137, 2024
Short summary
Effects of topographic and meteorological parameters on the surface area loss of ice aprons in the Mont Blanc massif (European Alps)
Suvrat Kaushik, Ludovic Ravanel, Florence Magnin, Yajing Yan, Emmanuel Trouve, and Diego Cusicanqui
The Cryosphere, 16, 4251–4271, https://doi.org/10.5194/tc-16-4251-2022,https://doi.org/10.5194/tc-16-4251-2022, 2022
Short summary
Geomorphology and shallow sub-sea-floor structures underneath the Ekström Ice Shelf, Antarctica
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022,https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary

Cited articles

Ahokangas, E. and Mäkinen, J.: Sedimentology of an ice lobe margin esker with implications for the deglacial dynamics of the Finnish Lake District lobe trunk, Boreas, 43, 90–106, https://doi.org/10.1111/bor.12023, 2014. 
Aylsworth, J. M. and Shilts, W. W.: Glacial features around the Keewatin Ice Divide: Districts of Mackenzie and Keewatin, Geol. Surv. Canada, Ottawa, Paper 88-24, 21 pp., 1989. 
Banerjee, I. and McDonald, B. C.: Nature of esker sedimentation, in: Glaciofluvial and Ghciolacustrine Sedimentation, edited by: Jopling, A. V. and McDonald, B. C., SEPM Special Publication 23, 132–154, 1975. 
Beaud, F., Flowers, G. E., and Venditti, J. G.: Modeling Sediment Transport in Ice-Walled Subglacial Channels and Its Implications for Esker Formation and Proglacial Sediment Yields, J. Geophys. Res.-Earth Surf., 123, 3206–3227, https://doi.org/10.1029/2018jf004779, 2018. 
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, https://doi.org/10.1016/j.earscirev.2007.02.002, 2007. 
Download
Short summary
We map series of aligned mounds (esker beads) across central Nunavut, Canada. Mounds are interpreted to have formed roughly annually as sediment carried by subglacial rivers is deposited at the ice margin. Chains of mounds are formed as the ice retreats. This high-resolution (annual) record allows us to constrain the pace of ice retreat, sediment fluxes, and the style of drainage through time. In particular, we suggest that eskers in general record a composite signature of ice-marginal drainage.