Articles | Volume 14, issue 4
https://doi.org/10.5194/tc-14-1173-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-1173-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Permafrost distribution and conditions at the headwalls of two receding glaciers (Schladming and Hallstatt glaciers) in the Dachstein Massif, Northern Calcareous Alps, Austria
Matthias Rode
Working Group on Alpine
Landscape Dynamics (ALADYN), Institute of Geography and Regional Science, University of Graz, Graz, Austria
Oliver Sass
Working Group on Geomorphology, Institute of Geography, University of
Bayreuth, Bayreuth, Germany
Andreas Kellerer-Pirklbauer
CORRESPONDING AUTHOR
Working Group on Alpine
Landscape Dynamics (ALADYN), Institute of Geography and Regional Science, University of Graz, Graz, Austria
Harald Schnepfleitner
Working Group on Alpine
Landscape Dynamics (ALADYN), Institute of Geography and Regional Science, University of Graz, Graz, Austria
Christoph Gitschthaler
Working Group on Alpine
Landscape Dynamics (ALADYN), Institute of Geography and Regional Science, University of Graz, Graz, Austria
Related authors
No articles found.
Andreas Kellerer-Pirklbauer, Michael Avian, Douglas I. Benn, Felix Bernsteiner, Philipp Krisch, and Christian Ziesler
The Cryosphere, 15, 1237–1258, https://doi.org/10.5194/tc-15-1237-2021, https://doi.org/10.5194/tc-15-1237-2021, 2021
Short summary
Short summary
Present climate warming leads to glacier recession and formation of lakes. We studied the nature and rate of lake evolution in the period 1998–2019 at Pasterze Glacier, Austria. We detected for instance several large-scale and rapidly occurring ice-breakup events from below the water level. This process, previously not reported from the European Alps, might play an important role at alpine glaciers in the future as many glaciers are expected to recede into valley basins allowing lake formation.
Related subject area
Discipline: Frozen ground | Subject: Geomorphology
A climate-driven, altitudinal transition in rock glacier dynamics detected through integration of geomorphological mapping and synthetic aperture radar interferometry (InSAR)-based kinematics
Discriminating viscous-creep features (rock glaciers) in mountain permafrost from debris-covered glaciers – a commented test at the Gruben and Yerba Loca sites, Swiss Alps and Chilean Andes
The cryostratigraphy of thermo-erosion gullies in the Canadian High Arctic demonstrates the resilience of permafrost
Review article: Retrogressive thaw slump theory and terminology
Assessment of rock glaciers and their water storage in Guokalariju, Tibetan Plateau
Identifying mountain permafrost degradation by repeating historical electrical resistivity tomography (ERT) measurements
Permafrost degradation at two monitored palsa mires in north-west Finland
Contrasted geomorphological and limnological properties of thermokarst lakes formed in buried glacier ice and ice-wedge polygon terrain
Recent degradation of interior Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne lidar
Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks
Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina
Insights into a remote cryosphere: a multi-method approach to assess permafrost occurrence at the Qugaqie basin, western Nyainqêntanglha Range, Tibetan Plateau
Rock glacier characteristics serve as an indirect record of multiple alpine glacier advances in Taylor Valley, Antarctica
Evaluating the destabilization susceptibility of active rock glaciers in the French Alps
Aldo Bertone, Nina Jones, Volkmar Mair, Riccardo Scotti, Tazio Strozzi, and Francesco Brardinoni
The Cryosphere, 18, 2335–2356, https://doi.org/10.5194/tc-18-2335-2024, https://doi.org/10.5194/tc-18-2335-2024, 2024
Short summary
Short summary
Traditional inventories display high uncertainty in discriminating between intact (permafrost-bearing) and relict (devoid) rock glaciers (RGs). Integration of InSAR-based kinematics in South Tyrol affords uncertainty reduction and depicts a broad elevation belt of relict–intact coexistence. RG velocity and moving area (MA) cover increase linearly with elevation up to an inflection at 2600–2800 m a.s.l., which we regard as a signature of sporadic-to-discontinuous permafrost transition.
Wilfried Haeberli, Lukas U. Arenson, Julie Wee, Christian Hauck, and Nico Mölg
The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, https://doi.org/10.5194/tc-18-1669-2024, 2024
Short summary
Short summary
Rock glaciers in ice-rich permafrost can be discriminated from debris-covered glaciers. The key physical phenomenon relates to the tight mechanical coupling between the moving frozen body at depth and the surface layer of debris in the case of rock glaciers, as opposed to the virtually inexistent coupling in the case of surface ice with a debris cover. Contact zones of surface ice with subsurface ice in permafrost constitute diffuse landforms beyond either–or-type landform classification.
Samuel Gagnon, Daniel Fortier, Etienne Godin, and Audrey Veillette
EGUsphere, https://doi.org/10.5194/egusphere-2024-208, https://doi.org/10.5194/egusphere-2024-208, 2024
Short summary
Short summary
Thermo-erosion gullies (TEGs) are one of the most common forms of abrupt permafrost degradation. While their inception has been examined in several studies, the processes of their stabilization remain poorly documented. For this study, we investigated the impacts of two TEGs in the Canadian High Arctic. We found that while the formation of a TEG leaves permanent scars in landscapes, on the long term, permafrost can recover to conditions similar to those pre-dating the initial disturbance.
Nina Nesterova, Marina Leibman, Alexander Kizyakov, Hugues Lantuit, Ilya Tarasevich, Ingmar Nitze, Alexandra Veremeeva, and Guido Grosse
EGUsphere, https://doi.org/10.5194/egusphere-2023-2914, https://doi.org/10.5194/egusphere-2023-2914, 2024
Short summary
Short summary
Retrogressive thaw slumps (RTSs) are widespread in the Arctic permafrost landforms. RTSs present a big interest for researchers because of their expansion due to climate change. There are currently different scientific schools and terminology used in the literature on this topic. We have critically reviewed existing concepts and terminology and provided clarifications to present a useful base for experts in the field and ease the introduction to the topic for scientists who are new to it.
Mengzhen Li, Yanmin Yang, Zhaoyu Peng, and Gengnian Liu
The Cryosphere, 18, 1–16, https://doi.org/10.5194/tc-18-1-2024, https://doi.org/10.5194/tc-18-1-2024, 2024
Short summary
Short summary
We map a detailed rock glaciers inventory to further explore the regional distribution controlling factors, water storage, and permafrost probability distribution in Guokalariju. Results show that (i) the distribution of rock glaciers is controlled by the complex composition of topo-climate factors, increases in precipitation are conducive to rock glaciers forming at lower altitudes, and (ii) 1.32–3.60 km3 of water is stored in the rock glaciers, or ~ 59 % of the water glaciers presently store.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Mariana Verdonen, Alexander Störmer, Eliisa Lotsari, Pasi Korpelainen, Benjamin Burkhard, Alfred Colpaert, and Timo Kumpula
The Cryosphere, 17, 1803–1819, https://doi.org/10.5194/tc-17-1803-2023, https://doi.org/10.5194/tc-17-1803-2023, 2023
Short summary
Short summary
The study revealed a stable and even decreasing thickness of thaw depth in peat mounds with perennially frozen cores, despite overall rapid permafrost degradation within 14 years. This means that measuring the thickness of the thawed layer – a commonly used method – is alone insufficient to assess the permafrost conditions in subarctic peatlands. The study showed that climate change is the main driver of these permafrost features’ decay, but its effect depends on the peatland’s local conditions.
Stéphanie Coulombe, Daniel Fortier, Frédéric Bouchard, Michel Paquette, Simon Charbonneau, Denis Lacelle, Isabelle Laurion, and Reinhard Pienitz
The Cryosphere, 16, 2837–2857, https://doi.org/10.5194/tc-16-2837-2022, https://doi.org/10.5194/tc-16-2837-2022, 2022
Short summary
Short summary
Buried glacier ice is widespread in Arctic regions that were once covered by glaciers and ice sheets. In this study, we investigated the influence of buried glacier ice on the formation of Arctic tundra lakes on Bylot Island, Nunavut. Our results suggest that initiation of deeper lakes was triggered by the melting of buried glacier ice. Given future climate projections, the melting of glacier ice permafrost could create new aquatic ecosystems and strongly modify existing ones.
Thomas A. Douglas, Christopher A. Hiemstra, John E. Anderson, Robyn A. Barbato, Kevin L. Bjella, Elias J. Deeb, Arthur B. Gelvin, Patricia E. Nelsen, Stephen D. Newman, Stephanie P. Saari, and Anna M. Wagner
The Cryosphere, 15, 3555–3575, https://doi.org/10.5194/tc-15-3555-2021, https://doi.org/10.5194/tc-15-3555-2021, 2021
Short summary
Short summary
Permafrost is actively degrading across high latitudes due to climate warming. We combined thousands of end-of-summer active layer measurements, permafrost temperatures, geophysical surveys, deep borehole drilling, and repeat airborne lidar to quantify permafrost warming and thawing at sites across central Alaska. We calculate the mass of permafrost soil carbon potentially exposed to thaw over the past 7 years (0.44 Pg) is similar to the yearly carbon dioxide emissions of Australia.
Steven V. Kokelj, Justin Kokoszka, Jurjen van der Sluijs, Ashley C. A. Rudy, Jon Tunnicliffe, Sarah Shakil, Suzanne E. Tank, and Scott Zolkos
The Cryosphere, 15, 3059–3081, https://doi.org/10.5194/tc-15-3059-2021, https://doi.org/10.5194/tc-15-3059-2021, 2021
Short summary
Short summary
Climate-driven landslides are transforming glacially conditioned permafrost terrain, coupling slopes with aquatic systems, and triggering a cascade of downstream effects. Nonlinear intensification of thawing slopes is primarily affecting headwater systems where slope sediment yields overwhelm stream transport capacity. The propagation of effects across watershed scales indicates that western Arctic Canada will be an interconnected hotspot of thaw-driven change through the coming millennia.
Christian Halla, Jan Henrik Blöthe, Carla Tapia Baldis, Dario Trombotto Liaudat, Christin Hilbich, Christian Hauck, and Lothar Schrott
The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, https://doi.org/10.5194/tc-15-1187-2021, 2021
Short summary
Short summary
In the semi-arid to arid Andes of Argentina, rock glaciers contain invisible and unknown amounts of ground ice that could become more important in future for the water availability during the dry season. The study shows that the investigated rock glacier represents an important long-term ice reservoir in the dry mountain catchment and that interannual changes of ground ice can store and release significant amounts of annual precipitation.
Johannes Buckel, Eike Reinosch, Andreas Hördt, Fan Zhang, Björn Riedel, Markus Gerke, Antje Schwalb, and Roland Mäusbacher
The Cryosphere, 15, 149–168, https://doi.org/10.5194/tc-15-149-2021, https://doi.org/10.5194/tc-15-149-2021, 2021
Short summary
Short summary
This study presents insights into the remote cryosphere of a mountain range at the Tibetan Plateau. Small-scaled studies and field data about permafrost occurrence are very scarce. A multi-method approach (geomorphological mapping, geophysics, InSAR time series analysis) assesses the lower occurrence of permafrost the range of 5350 and 5500 m above sea level (a.s.l.) in the Qugaqie basin. The highest, multiannual creeping rates up to 150 mm/yr are observed on rock glaciers.
Kelsey Winsor, Kate M. Swanger, Esther Babcock, Rachel D. Valletta, and James L. Dickson
The Cryosphere, 14, 1–16, https://doi.org/10.5194/tc-14-1-2020, https://doi.org/10.5194/tc-14-1-2020, 2020
Short summary
Short summary
We studied an ice-cored rock glacier in Taylor Valley, Antarctica, coupling ground-penetrating radar analyses with stable isotope and major ion geochemistry of (a) surface ponds and (b) buried clean ice. These analyses indicate that the rock glacier ice is fed by a nearby alpine glacier, recording multiple Holocene to late Pleistocene glacial advances. We demonstrate the potential to use rock glaciers and buried ice, common throughout Antarctica, to map previous glacial extents.
Marco Marcer, Charlie Serrano, Alexander Brenning, Xavier Bodin, Jason Goetz, and Philippe Schoeneich
The Cryosphere, 13, 141–155, https://doi.org/10.5194/tc-13-141-2019, https://doi.org/10.5194/tc-13-141-2019, 2019
Short summary
Short summary
This study aims to assess the occurrence of rock glacier destabilization in the French Alps, a process that causes a landslide-like behaviour of permafrost debris slopes. A significant number of the landforms in the region were found to be experiencing destabilization. Multivariate analysis suggested a link between destabilization occurrence and permafrost thaw induced by climate warming. These results call for a regional characterization of permafrost hazards in the context of climate change.
Cited articles
Angelopoulos, M., Pollard, W. H., and Couture, N.: The application of CCR and GPR
to characterize ground ice conditions at Parsons Lake, Northwest
Territories, Cold Reg. Sci. Technol., 85, 22–33, 2013.
Benn, D. I. and Evans, D. J. A.: Glaciers and Glaciation – Second Edition, Hodder
Arnold Publication, 802 pp., 2010.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges, The Cryosphere, 6, 125–140, https://doi.org/10.5194/tc-6-125-2012, 2012a.
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012, 2012b.
Brenning, A., Gruber, S., and Hoelzle, M.: Sampling and statistical analyses of
BTS measurements, Permafrost Periglac., 16, 383–393, 2005.
Draebing, D., Haberkorn, A., Krautblatter, M., Kenner, R., and Phillips, M.:
Thermal and mechanical responses resulting from spatial and temporal snow
cover variability in permafrost rock slopes, Permafrost Periglac., 28, 140–157, 2017a.
Draebing, D., Krautblatter, M., and Hoffmann, T.: Thermo-cryogenic controls of
fracture kinematics in permafrost rockwalls, Geophys. Res. Lett.,
44, 3535–3544, 2017b.
Ebohon, B. and Schrott, L.: Modeling Mountain Permafrost Distribution, A New
Permafrost Map of Austria, in: Proceedings
of the Ninth International Conference on Permafrost, edited by: Kane, D. und Hinkel, K., Fairbanks, Alaska,
397–402, 2009.
Fischer, A., Seiser, B., Stocker Waldhuber, M., Mitterer, C., and Abermann, J.: Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria, The Cryosphere, 9, 753–766, https://doi.org/10.5194/tc-9-753-2015, 2015.
Frauenfelder, R.: Regional-scale modelling of the occurrence and dynamics of
rockglaciers and the distribution of paleopermafrost, Schriftenreihe
Physische Geographie, Glaziologie und Geomorphodynamik, University of
Zurich, 2005.
Gasser, D., Gusterhuber J., Krische, O., Puhr, B., Scheucher, L., Wagner, T.,
and Stüwe, K.: Geology of Styria: An Overview, Mitteilungen des
Naturwissenschaftlichen Vereines für Steiermark, 139, 5–36, 2009.
GBA - Geologische Bundesanstalt: Geologischen Karte der Republik
Österreich, Bl. 96 Bad Ischl, Wien, 1982.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and
Stoffel, M.: 21st century climate change in the European Alps-A review, Sci.
Total Environ., 493, 1138–1151, https://doi.org/10.1016/j.scitotenv.2013.07.050,
2014.
Gruber, S., Peter, M., and Hoelzle, M.: Surface temperatures in steep Alpine
rock faces – A strategy for regional-scale measurement and modelling, Proc.
8th Int. Conf. Permafrost, 1, 325–330, 2003.
Gubler, S., Fiddes, J., Keller, M., and Gruber, S.: Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain, The Cryosphere, 5, 431–443, https://doi.org/10.5194/tc-5-431-2011, 2011.
Haeberli, W.: Die Basis-Temperatur der winterlichen Schneedecke als
möglicher Indikator für die Verbreitung von Permafrost in den Alpen,
Zeitschrift für Gletscherkunde und Glazialgeologie, 9,
221–227, 1973.
Haeberli, W.: Untersuchungen zur Verbreitung von Permafrost zwischen
Flüelapass und Piz Grialetsch (Graubünden), Mitteilungen der
Versuchsanstalt für Wasserbau, Hydrologie u. Glaziologie der ETH
Zürich, 17, Zürich, 221 pp., 1975.
Haeberli, W. and Hoelzle, M.: Application of inventory data for estimating
characteristics of and regional climate-change effects on mountain glaciers:
a pilot study with the European Alps, Ann. Glaciol., 21, 206–212,
1995.
Haeberli, W., Wegmann, M., and Vonder Mühll, D.: Slope stability problems
related to glacier shrinkage and permafrost degradation in the Alps, Eclogae
Geol. Helv., 90, 407–414, 1997.
Haeberli, W., Hoelzle, M., Paul, F., and Zemp, M.: Integrated monitoring of
mountain glaciers as key indicators of global climate change: the European
Alps, Ann. Glaciol., 46, 150–160, 2007.
Haeberli, W., Huggel, C., Paul, F., and Zemp, M.: Glacial responses to climate
change, in: Treatise on Geomorphology, 13, Academic Press, San Diego,
152–175, 2013.
Hartmeyer, I., Keuschnig, M., and Schrott, L.: Long-term monitoring of
permafrost-affected rock faces – A scale-oriented approach for the
investigation of ground thermal conditions in alpine terrain, Kitzsteinhorn,
Austria, Austrian J. Earth Sc., 105, 128–139, 2012.
Harris, C., Davies, M., and Etzelmüller, B.: The assessment of potential
geotechnical hazards associated with mountain permafrost in a warming global
climate, Permafrost Periglac., 12, 145–156, 2001.
Harris, C., Vonder Mühll, C., Isaksen, K., Haeberli, W., Sollid, J. L.,
King, L., Holmlund, P., Dramis, F., Gugliemin, M., and Palacios, D.: Warming
permafrost in European mountains, Global Planet. Change, 39, 215–225,
2003.
Hauck, C.: Geophysical methods for detecting permafrost in high mountains,
171, ETH Zurich, Zurich, 1–204, 2001.
Hauck, C. and Kneisel, C.: Applied Geophysics in Periglacial Environments,
University Press, Cambridge, 240 pp., 2008.
Hauck, C., Vonder Mühll, D., and Maurer, H.: Using DC resistivity
tomography to detect and characterize mountain permafrost, Geophys.
Prospect., 51, 273–284, 2003.
Helfricht, K.: Veränderungen des Massenhaushaltes am Hallstätter
Gletscher seit 1856, Diplomarbeit, Institut für Meteorologie und
Geophysik, Leopold-Franzens-Universität Innsbruck, 139 pp., 2009.
Hilbich, C., Marescot, L., Hauck, C., Loke, M. H., and Mäusbacher, R.:
Applicability of Electrical Resistivity Tomography Monitoring to coarse
blocky and ice-rich permafrost landforms, Permafrost Periglac., 20, 269–284, https://doi.org/10.1002/ppp.652, 2009.
Humlum O.: The climatic significance of rock glaciers, Permafrost
Periglac., 9, 375–395, 1998.
Ishikawa, M.: Thermal regimes at the snow–ground interface and their
implications for permafrost investigation, Geomorphology, 52,
105–120, 2003.
Kellerer-Pirklbauer, A.: A regional signal of significant recent ground
surface temperature warming in the periglacial environment of Central
Austria, in: XI. International
Conference On Permafrost – Book of Abstracts, edited by: Günther, F. and Morgenstern, A., 20–24 June 2016, Bibliothek
Wissenschaftspark Albert Einstein, Potsdam, Germany, 1025–1026, 2016.
Kellerer-Pirklbauer, A.: Potential weathering by freeze-thaw action in alpine
rocks in the European Alps during a nine year monitoring period,
Geomorphology, 296, 113–131,
https://doi.org/10.1016/j.geomorph.2017.08.020, 2017.
Kellerer-Pirklbauer, A.: Long-term monitoring of sporadic permafrost at the
eastern margin of the European Alps (Hochreichart, Seckauer Tauern range,
Austria), Permafrost Periglac., 30, 260–277,
https://doi.org/10.1002/ppp.2021, 2019.
Kellerer-Pirklbauer, A., Lieb, G., Avian, M., and Gspurning, J.: The Response
of Partially Debris-Covered Valley Glaciers to Climate Change: The Example
of the Pasterze Glacier (Austria) in the Period 1964 to 2006, Geogr.
Ann. A, 90, 269–285, 2008.
Kellerer-Pirklbauer, A., Lieb, G. K., Avian, M., and Carrivick, J.: Climate
change and rock fall events in high mountain areas: Numerous and extensive
rock falls in 2007 at Mittlerer Burgstall, Central Austria, Geogr.
Ann. A, 94, 59–78, 2012.
Kern, K., Lieb, G. K., Seier, G., and Kellerer-Pirklbauer, A.: Modelling
geomorphological hazards to assess the vulnerability of alpine
infrastructure: The example of the Großglockner-Pasterze area, Austria,
Austrian J. Earth Sci., 105/2, 113–127, 2012.
Kneisel, C.: Permafrost in recently deglaciated glacier forefields –
measurements and observations in the eastern Swiss Alps and northern Sweden,
Z. Geomorphol., 47, 289–305, 2003.
Kneisel, C., Hauck, C., Fortier, R., and Moorman, B.: Advances in
geophysical methods for permafrost investigations, Permafrost Periglac., 19,
157–178, https://doi.org/10.1002/ppp.616, 2008.
Knödel, K., Krummel, H., and Lange, G. (Eds.): Geophysik Handbuch zur
Erkundung des Untergrundes von Deponien und Altlasten, Springer Verlag,
Berlin, Band 3, 1102 pp., 2005.
Krautblatter, M. and Hauck, C.: Electrical resistivity tomography monitoring
of permafrost in solid rockwalls, J. Geophys. Res.-Earth, 112, F02S20,
https://doi.org/10.1029/2006jf000546, 2007.
Krautblatter, M., Verleysdonk, S., Flores-Orozco, A., and Kemna, A.:
Temperature-calibrated imaging of seasonal changes in permafrost rockwalls
by quantitative electrical resistivity tomography (Zugspitze,
German/Austrian Alps), J. Geophys. Res.-Earth, 115, F02003,
https://doi.org/10.1029/2008JF001209, 2010.
Krautblatter, M., Funk, D., and Günzel, F.: Why permafrost rocks become
unstable: a rock–ice-mechanical model in time and space, Earth Surf.
Proc. Land., 38, 876–887, 2013.
Krobath, M. and Lieb, G.: Die Dachsteingletscher im 20. Jahrhundert, in:
Das Karls-Eisfeld, Forschungsarbeiten am Hallstätter
Gletscher, edited by: Brunner, K., Wissenschaftliche Alpenvereinshefte, H. 38, Haus des Alpinismus,
München, 75–101, 2004.
Laxton, S. and Coates, J.: Geophysical and borehole investigations of
permafrost conditions associated with compromised infrastructure in Dawson
and Ross River, Yukon, in: Yukon Exploration and Geology 2010, edited by:
MacFarlane, K. E., Weston, L. H., and Relf, C., Yukon Geological Survey,
135–148, 2011.
Lieb, G. and Schopper, A.: Zur Verbreitung von Permafrost am Dachstein
(Nördliche Kalkalpen, Steiermark), Mitt. naturwiss. Ver.
Steiermark, 121, 149–163, 1991.
Lieb, G., Kellerer-Pirklbauer, A., and Strasser, U.: Effekte des Klimawandels im
Naturraum des Hochgebirges, in:
Geographie für eine Welt im Wandel, edited by: Fassmann, H. and Glade, T., 57. Deutscher Geographentag 2009
in Wien, 2012.
Loke, M. H.: Electrical imaging surveys for environmental and engineering
studies, a practical guide to 2-D and 3-D surveys,
Penang (Malaysia), 1999.
Magnin, F., Krautblatter, M., Deline, P., Ravanel, L., Malet E. and
Bevington, A.: Determination of warm, sensitive permafrost areas in
near-vertical rockwalls and evaluation of distributed models by electrical
resistivity tomography, J. Geophys. Res., 120, 745–762,
https://doi.org/10.1002/2014JF003351, 2015.
Magnin, F., Josnin, J.-Y., Ravanel, L., Pergaud, J., Pohl, B., and Deline, P.: Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century, The Cryosphere, 11, 1813–1834, https://doi.org/10.5194/tc-11-1813-2017, 2017.
Marescot, L., Loke, M. H., Chapellier, D., Delaloye, R., Lambiel, C., and
Reynard, E.: Assessing reliability of 2D resistivity imaging in permafrost
and rock glacier studies using the depth of investigation index method, Near
Surf. Geophys., 1, 57–67, 2003.
Matsuoka, N. and Murton, J.: Frost weathering: Recent advances and future
directions, Permafrost Periglac., 19, 195–210, 2008.
Matsuoka, N. and Sakai, H.: Rockfall activity from an alpine cliff during
thawing periods, Geomorphology, 28, 309–328,
https://doi.org/10.1016/S0169-555X(98)00116-0, 1999.
Moser, R.: Dachsteingletscher und deren Spuren im Vorfeld, Musealverein
Hallstatt, Hallstatt, 143 pp., 1997.
Murton, J. B., Coutard, J.-P., Lautridou, J. P., Ozouf, J.-C., Robinson, D. A.,
and Williams, R. G. B.: Physical modelling of bedrock brecciation by ice
segregation in permafrost, Permafrost Periglac., 12,
255–266, 2001.
Oldenburg, D. W. and Li, Y. G.: Estimating depth of investigation in dc
resistivity and IP surveys, Geophysics, 64, 403–416, https://doi.org/10.1190/1.1444545, 1999.
Österreichischer Alpenverein: Jahrbuch des Österreichischen
Alpenvereins (Alpenvereinszeitschrift), Bd. 83, Universitätsverlag
Wagner, Innsbruck, 158 pp., 1958.
Otto, J. and Keuschnig, M.: Permafrost-Glacier Interaction – Process
Understanding of Permafrost Reformation and Degradation, Austrian Permafrost
Research Initiative, Final Report, chap. 1, edited by: Rutzinger, M., Heinrich, K.,
Borsdorf, A., and Stötter, J., ÖAW – Austrian
Academy of Sciences, 3–16, 2014.
Paul, F., Kääb, A., Maisch, M., Kellenberger, T. W., and Haeberli,
W.: Rapid disintegration of Alpine glaciers observed with satellite data,
Geophys. Res. Lett., 31, L21402, https://doi.org/10.1029/2004GL020816, 2004.
Ravanel, L. and Deline, P.: Climate influence on rockfalls in high-Alpine
steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc
massif) since the end of the “Little Ice Age”, Holocene, 21, 357–365, https://doi.org/10.1177/0959683610374887, 2011.
Rödder, T. and Kneissel, C.: Permafrost mapping using quasi-3D
resistivity imaging, Murtèl, Swiss Alps, Near Surf. Geophys., 10,
117–127, 2012.
Sanders, J., Cuffey, K., Moore, J., Macgregor, K., and Kavanaugh, J.:
Periglacial weathering and headwall erosion in cirque glacier bergschrunds,
Geology, 40, 779–782, https://doi.org/10.1130/G33330.1, 2012.
Sass, O.: Spatial and temporal patterns of talus activity – a lichenometric
approach in the Stubaier Alps, Austria, Geogr. Ann., 92A, 375–391,
2010.
Sattler, K., Keiler, M., Zischg, A., and Schrott, L.: On the Connection
between Debris Flow Activity and Permafrost Degradation: A Case Study from
the Schnalstal, South Tyrolean Alps, Italy, Permafrost Periglac., 22, 254–265, 2011.
Sattler, K., Anderson, B., Mackintosh, A., Norton, K., and de Róiste, M.:
Estimating Permafrost Distribution in the Maritime Southern Alps, New
Zealand, based on climatic conditions at rock glacier sites, Front.
Earth Sci., 4, 4, https://doi.org/10.3389/feart.2016.00004, 2016.
Schmid, M.-O., Gubler, S., Fiddes, J., and Gruber, S.: Inferring snowpack ripening and melt-out from distributed measurements of near-surface ground temperatures, The Cryosphere, 6, 1127–1139, https://doi.org/10.5194/tc-6-1127-2012, 2012.
Schöner, W., Boeckli, L., Hausmann, H., Otto, J. C., Reisenhofer, S., Riedl, C., and Seren, S.: Spatial Patterns of Permafrost at Hoher Sonnblick
(Austrian Alps) – Extensive Field-measurements and Modelling Approaches,
Vienna, Austrian J. Earth Sci., 105, 154–168, 2012.
Schopper, A.: Die glaziale und spätglaziale Landschaftsgenese im
südlichen Dachstein und ihre Beziehung zum Kulturlandausbau,
Diplomarbeit, Karl-Franzens- Universität Graz, 161 pp., 1989.
Schrott, L. and Sass, O.: Application of field geophysics in geomorphology:
Advances and limitations exemplified by case studies, Geomorphology,
93, 55–73, 2008.
Simony, F.: Photographische Aufnahmen und Gletscheruntersuchungen im
Dachsteingebirge, Mitteilungen des Deutschen und
Österreischischen Alpenvereins, 10, 314–317, 1884.
Simony, F.: Das Dachsteingebiet, Ein geographisches Charakterbild aus den
Österreichischen Nordalpen, Hölzel, Wien, 152 pp., 1895.
snowreporter: snowreporter Telekommunikationssysteme GmbH,
Klimadatensatz Dachstein, Graz, October 2013.
Stiegler, C., Rode, M., Sass, O., and Otto, J.: An Undercooled Scree Slope
Detected by Geophysical Investigations in Sporadic Permafrost below 1000 M
ASL, Central Austria, Earth Surf. Processes, 25, 194–207, 2014.
Supper, R., Ottowitz, D., Jochum, B., Römer, A, Pfeiler, S., Kauer, S.,
Keuschnig, M., and Ita, A.: Geoelectrical monitoring of frozen ground and
permafrost in alpine areas: field studies and considerations towards an
improved measuring technology, Near Surf. Geophys., 2014, 93–115,
2014.
Suter, S., Laternser, M., Haeberli, W., Frauenfelder, R., and Hoelzle, M.:
Cold firn and ice of high altitude glaciers in the Alps: measurements and
distribution modelling, J. Glaciol., 47, 85–96, 2001.
Wegmann, M., Gudmundsson, G., and Haeberli, W.: Permafrost changes and the
retreat of Alpine glaciers: A thermal modelling approach, Permafrost
Periglac., 9, 23–33, 1998.
Westermann, S., Boike, J., Langer, M., Schuler, T. V., and Etzelmüller, B.: Modeling the impact of wintertime rain events on the thermal regime of permafrost, The Cryosphere, 5, 945–959, https://doi.org/10.5194/tc-5-945-2011, 2011.
Wirsig, C., Zasadni, J., Christl, M., Akçar, N., and Ivy-Ochs, S.: Dating the
onset of LGM ice surface lowering in the High Alps, Quaternary Sci.
Rev., 143, 37–50, 2016.
Zemp, M., Paul, F., Hoelzle, M., and Haeberli, W.: Glacier fluctuations in
the European Alps 1850–2000: an overview and spatiotemporal analysis of
available data, in: The darkening peaks: Glacial retreat in scientific and
social context, edited by: Orlove, B., Wiegandt, E., and Luckman, B.,
Darkening Peaks: Glacier Retreat, Science, and Society, Berkeley, 152-16, 2008.