Articles | Volume 14, issue 3
The Cryosphere, 14, 1083–1104, 2020
The Cryosphere, 14, 1083–1104, 2020

Research article 25 Mar 2020

Research article | 25 Mar 2020

Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks

Young Jun Kim et al.

Related authors

Classification of sea ice types in Sentinel-1 synthetic aperture radar images
Jeong-Won Park, Anton Andreevich Korosov, Mohamed Babiker, Joong-Sun Won, Morten Wergeland Hansen, and Hyun-Cheol Kim
The Cryosphere, 14, 2629–2645,,, 2020
Short summary
CryoSat Ice Baseline-D validation and evolutions
Marco Meloni, Jerome Bouffard, Tommaso Parrinello, Geoffrey Dawson, Florent Garnier, Veit Helm, Alessandro Di Bella, Stefan Hendricks, Robert Ricker, Erica Webb, Ben Wright, Karina Nielsen, Sanggyun Lee, Marcello Passaro, Michele Scagliola, Sebastian Bjerregaard Simonsen, Louise Sandberg Sørensen, David Brockley, Steven Baker, Sara Fleury, Jonathan Bamber, Luca Maestri, Henriette Skourup, René Forsberg, and Loretta Mizzi
The Cryosphere, 14, 1889–1907,,, 2020
Short summary
Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea
Seohui Park, Minso Shin, Jungho Im, Chang-Keun Song, Myungje Choi, Jhoon Kim, Seungun Lee, Rokjin Park, Jiyoung Kim, Dong-Won Lee, and Sang-Kyun Kim
Atmos. Chem. Phys., 19, 1097–1113,,, 2019
Short summary
Reviews and syntheses: Ocean iron fertilization experiments – past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project
Joo-Eun Yoon, Kyu-Cheul Yoo, Alison M. Macdonald, Ho-Il Yoon, Ki-Tae Park, Eun Jin Yang, Hyun-Cheol Kim, Jae Il Lee, Min Kyung Lee, Jinyoung Jung, Jisoo Park, Jiyoung Lee, Soyeon Kim, Seong-Su Kim, Kitae Kim, and Il-Nam Kim
Biogeosciences, 15, 5847–5889,,, 2018
Short summary
C. U. Hyun and H. C. Kim
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1, 211–215,,, 2018

Related subject area

Discipline: Sea ice | Subject: Sea Ice
An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982,,, 2021
Short summary
Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, Alvaro Ivanoff, and Sahra Kacimi
The Cryosphere, 15, 821–833,,, 2021
Surface-based Ku- and Ka-band polarimetric radar for sea ice studies
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426,,, 2020
Short summary
Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations
Leandro Ponsoni, François Massonnet, David Docquier, Guillian Van Achter, and Thierry Fichefet
The Cryosphere, 14, 2409–2428,,, 2020
Short summary
Satellite-based sea ice thickness changes in the Laptev Sea from 2002 to 2017: comparison to mooring observations
H. Jakob Belter, Thomas Krumpen, Stefan Hendricks, Jens Hoelemann, Markus A. Janout, Robert Ricker, and Christian Haas
The Cryosphere, 14, 2189–2203,,, 2020
Short summary

Cited articles

Archer, K. J. and Kimes, R. V.: Empirical characterization of random forest variable importance measures, Comput. Stat. Data. An., 52, 2249–2260,, 2008. 
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., and Ingvaldsen, R. B.: Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat, J. Climate, 25, 4736–4743,, 2012. 
Brahimi, M., Boukhalfa, K., and Moussaoui, A.: Deep learning for tomato diseases: classification and symptoms visualization, Appl. Artif. Intell., 31, 299–315, 2017. 
Cavalieri, D. J. and Parkinson, C. L.: Arctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 881–889,, 2012. 
Chen, K., Wang, J., Chen, L.-C., Gao, H., Xu, W., and Nevatia, R.: Abc-cnn: An attention based convolutional neural network for visual question answering, arXiv Prepr. arXiv1511.05960, 2015. 
Short summary
In this study, we proposed a novel 1-month sea ice concentration (SIC) prediction model with eight predictors using a deep-learning approach, convolutional neural networks (CNNs). The proposed CNN model was evaluated and compared with the two baseline approaches, random-forest and simple-regression models, resulting in better performance. This study also examined SIC predictions for two extreme cases in 2007 and 2012 in detail and the influencing factors through a sensitivity analysis.