Articles | Volume 13, issue 3
https://doi.org/10.5194/tc-13-927-2019
https://doi.org/10.5194/tc-13-927-2019
Research article
 | 
18 Mar 2019
Research article |  | 18 Mar 2019

Resolving the influence of temperature forcing through heat conduction on rock glacier dynamics: a numerical modelling approach

Alessandro Cicoira, Jan Beutel, Jérome Faillettaz, Isabelle Gärtner-Roer, and Andreas Vieli

Related authors

Thermal diffusivity of permafrost in the Swiss Alps determined from borehole temperature data
Samuel Weber and Alessandro Cicoira
EGUsphere, https://doi.org/10.5194/egusphere-2024-2652,https://doi.org/10.5194/egusphere-2024-2652, 2024
Short summary
Multi-sensor monitoring and data integration reveal cyclical destabilization of the Äußeres Hochebenkar rock glacier
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023,https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
In situ observations of the Swiss periglacial environment using GNSS instruments
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe​​​​​​​ Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza​​​​​​​, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022,https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary

Related subject area

Discipline: Frozen ground | Subject: Mountain Processes
Quantifying frost-weathering-induced damage in alpine rocks
Till Mayer, Maxim Deprez, Laurenz Schröer, Veerle Cnudde, and Daniel Draebing
The Cryosphere, 18, 2847–2864, https://doi.org/10.5194/tc-18-2847-2024,https://doi.org/10.5194/tc-18-2847-2024, 2024
Short summary
Pressurised water flow in fractured permafrost rocks revealed by joint electrical resistivity monitoring and borehole temperature analysis
Maike Offer, Samuel Weber, Michael Krautblatter, Ingo Hartmeyer, and Markus Keuschnig
EGUsphere, https://doi.org/10.5194/egusphere-2024-893,https://doi.org/10.5194/egusphere-2024-893, 2024
Short summary
Rapid warming and degradation of mountain permafrost in Norway and Iceland
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023,https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Mountain permafrost in the Central Pyrenees: insights from the Devaux ice cave
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023,https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Glacier–permafrost relations in a high-mountain environment: 5 decades of kinematic monitoring at the Gruben site, Swiss Alps
Isabelle Gärtner-Roer, Nina Brunner, Reynald Delaloye, Wilfried Haeberli, Andreas Kääb, and Patrick Thee
The Cryosphere, 16, 2083–2101, https://doi.org/10.5194/tc-16-2083-2022,https://doi.org/10.5194/tc-16-2083-2022, 2022
Short summary

Cited articles

Arenson, L., Hoelzle, M., and Springman, S.: Borehole deformation measurements and internal structure of some rock glaciers in Switzerland, Permafrost Periglac., 13, 117–135, https://doi.org/10.1002/ppp.414, 2002. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Arenson, L., Springman, S. M., and Sego, D.: The rheology of frozen soils, Appl. Rheol., 17, 12147-1, https://doi.org/10.3933/ApplRheol-17-12147, 2006. a
Arenson, L. U. and Springman, S. M.: Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0 C, Can. Geotech. J., 42, 431–442, https://doi.org/10.1139/t04-109, 2005a. a, b, c, d, e, f, g, h
Arenson, L. U. and Springman, S. M.: Triaxial constant stress and constant strain rate tests on ice-rich permafrost samples, Can. Geotech. J., 42, 412–430, https://doi.org/10.1139/t04-111, 2005b. a, b
Arenson, L. U., Johansen, M. M., and Springman, S. M.: Effects of volumetric ice content and strain rate on shear strength under triaxial conditions for frozen soil samples, Permafrost Periglac., 15, 261–271, https://doi.org/10.1002/ppp.498, 2004. a
Download
Short summary
Rock glacier flow varies on multiple timescales. The variations have been linked to climatic forcing, but a quantitative understanding is still missing. We use a 1-D numerical modelling approach coupling heat conduction to a creep model in order to study the influence of temperature variations on rock glacier flow. Our results show that heat conduction alone cannot explain the observed variations. Other processes, likely linked to water, must dominate the short-term velocity signal.