Articles | Volume 13, issue 2
https://doi.org/10.5194/tc-13-693-2019
https://doi.org/10.5194/tc-13-693-2019
Research article
 | 
28 Feb 2019
Research article |  | 28 Feb 2019

New insights into the environmental factors controlling the ground thermal regime across the Northern Hemisphere: a comparison between permafrost and non-permafrost areas

Olli Karjalainen, Miska Luoto, Juha Aalto, and Jan Hjort

Related authors

Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023,https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary
High-resolution predictions of ground ice content for the Northern Hemisphere permafrost region
Olli Karjalainen, Juha Aalto, Mikhail Z. Kanevskiy, Miska Luoto, and Jan Hjort
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-144,https://doi.org/10.5194/essd-2022-144, 2022
Manuscript not accepted for further review
Short summary
New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere
Youhua Ran, Xin Li, Guodong Cheng, Jingxin Che, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, Huijun Jin, Jaroslav Obu, Masahiro Hori, Qihao Yu, and Xiaoli Chang
Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022,https://doi.org/10.5194/essd-14-865-2022, 2022
Short summary

Related subject area

Discipline: Frozen ground | Subject: Arctic (e.g. Greenland)
Validation of pan-Arctic soil temperatures in modern reanalysis and data assimilation systems
Tyler C. Herrington, Christopher G. Fletcher, and Heather Kropp
The Cryosphere, 18, 1835–1861, https://doi.org/10.5194/tc-18-1835-2024,https://doi.org/10.5194/tc-18-1835-2024, 2024
Short summary
Characterization of atmospheric methane release in the outer Mackenzie River delta from biogenic and thermogenic sources
Daniel Wesley, Scott Dallimore, Roger MacLeod, Torsten Sachs, and David Risk
The Cryosphere, 17, 5283–5297, https://doi.org/10.5194/tc-17-5283-2023,https://doi.org/10.5194/tc-17-5283-2023, 2023
Short summary
Accelerated mobilization of organic carbon from retrogressive thaw slumps on the northern Taymyr Peninsula
Philipp Bernhard, Simon Zwieback, and Irena Hajnsek
The Cryosphere, 16, 2819–2835, https://doi.org/10.5194/tc-16-2819-2022,https://doi.org/10.5194/tc-16-2819-2022, 2022
Short summary
The importance of freeze–thaw cycles for lateral tracer transport in ice-wedge polygons
Elchin E. Jafarov, Daniil Svyatsky, Brent Newman, Dylan Harp, David Moulton, and Cathy Wilson
The Cryosphere, 16, 851–862, https://doi.org/10.5194/tc-16-851-2022,https://doi.org/10.5194/tc-16-851-2022, 2022
Short summary
The cryostratigraphy of the Yedoma cliff of Sobo-Sise Island (Lena delta) reveals permafrost dynamics in the central Laptev Sea coastal region during the last 52 kyr
Sebastian Wetterich, Alexander Kizyakov, Michael Fritz, Juliane Wolter, Gesine Mollenhauer, Hanno Meyer, Matthias Fuchs, Aleksei Aksenov, Heidrun Matthes, Lutz Schirrmeister, and Thomas Opel
The Cryosphere, 14, 4525–4551, https://doi.org/10.5194/tc-14-4525-2020,https://doi.org/10.5194/tc-14-4525-2020, 2020
Short summary

Cited articles

Aalto, J., Harrison, S., and Luoto, M.: Statistical modelling predicts almost complete loss of major periglacial processes in Northern Europe by 2100, Nat. Commun., 8, 515, https://doi.org/10.1038/s41467-017-00669-3, 2017. 
Aalto, J., Karjalainen, O., Hjort, J., and Luoto, M.: Statistical forecasting of current and future circum-Arctic ground temperatures and active layer thickness, Geophys. Res. Lett., 45, 4889–4898, https://doi.org/10.1029/2018GL078007, 2018a. 
Aalto, J., Scherrer, D., Lenoir, J., Guisan, A., and Luoto, M.: Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems, Environ. Res. Lett., 13, 074003, https://doi.org/10.1088/1748-9326/aac83e, 2018b. 
AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 2017. 
Atchley, A. L., Coon, E. T., Painter, S. L., Harp, D. R., and Wilson, C. J.: Influences and interactions of inundation, peat, and snow on active layer thickness, Geophys. Res. Lett., 43, 5116–5123, https://doi.org/10.1002/2016GL068550, 2016. 
Download
Short summary
Using a statistical modelling framework, we examined the environmental factors controlling ground thermal regimes inside and outside the Northern Hemisphere permafrost domain. We found that climatic factors were paramount in both regions, but with varying relative importance and effect size. The relationships were often non-linear, especially in permafrost conditions. Our results suggest that these non-linearities should be accounted for in future ground thermal models at the hemisphere scale.