Articles | Volume 13, issue 2
https://doi.org/10.5194/tc-13-693-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-693-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New insights into the environmental factors controlling the ground thermal regime across the Northern Hemisphere: a comparison between permafrost and non-permafrost areas
Olli Karjalainen
CORRESPONDING AUTHOR
Geography Research Unit, University of Oulu, 90014, Oulu, Finland
Miska Luoto
Department of Geosciences and Geography, University of Helsinki,
00014, Helsinki, Finland
Juha Aalto
Department of Geosciences and Geography, University of Helsinki,
00014, Helsinki, Finland
Finnish Meteorological Institute, 00101, Helsinki, Finland
Jan Hjort
Geography Research Unit, University of Oulu, 90014, Oulu, Finland
Related authors
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023, https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary
Short summary
For the first time, suitable environments for palsas and peat plateaus were modeled for the whole Northern Hemisphere. The hotspots of occurrences were in northern Europe, western Siberia, and subarctic Canada. Climate change was predicted to cause almost complete loss of the studied landforms by the late century. Our predictions filled knowledge gaps in the distribution of the landforms, and they can be utilized in estimation of the pace and impacts of the climate change over northern regions.
Olli Karjalainen, Juha Aalto, Mikhail Z. Kanevskiy, Miska Luoto, and Jan Hjort
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-144, https://doi.org/10.5194/essd-2022-144, 2022
Manuscript not accepted for further review
Short summary
Short summary
The amount of underground ice in the Arctic permafrost has a central role when assessing climate change-induced changes to natural conditions and human activity in the Arctic. Here, we present compilations of field-verified ground ice observations and high-resolution estimates of Northern Hemisphere ground ice content. The data highlight the variability of ground ice contents across the Arctic and provide called-for information to be used in modelling and environmental assessment studies.
Youhua Ran, Xin Li, Guodong Cheng, Jingxin Che, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, Huijun Jin, Jaroslav Obu, Masahiro Hori, Qihao Yu, and Xiaoli Chang
Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022, https://doi.org/10.5194/essd-14-865-2022, 2022
Short summary
Short summary
Datasets including ground temperature, active layer thickness, the probability of permafrost occurrence, and the zonation of hydrothermal condition with a 1 km resolution were released by integrating unprecedentedly large amounts of field data and multisource remote sensing data using multi-statistical\machine-learning models. It updates the understanding of the current thermal state and distribution for permafrost in the Northern Hemisphere.
Vilna Tyystjärvi, Pekka Niittynen, Julia Kemppinen, Miska Luoto, Tuuli Rissanen, and Juha Aalto
The Cryosphere, 18, 403–423, https://doi.org/10.5194/tc-18-403-2024, https://doi.org/10.5194/tc-18-403-2024, 2024
Short summary
Short summary
At high latitudes, winter ground surface temperatures are strongly controlled by seasonal snow cover and its spatial variation. Here, we measured surface temperatures and snow cover duration in 441 study sites in tundra and boreal regions. Our results show large variations in how much surface temperatures in winter vary depending on the landscape and its impact on snow cover. These results emphasise the importance of understanding microclimates and their drivers under changing winter conditions.
Anna-Maria Virkkala, Pekka Niittynen, Julia Kemppinen, Maija E. Marushchak, Carolina Voigt, Geert Hensgens, Johanna Kerttula, Konsta Happonen, Vilna Tyystjärvi, Christina Biasi, Jenni Hultman, Janne Rinne, and Miska Luoto
Biogeosciences, 21, 335–355, https://doi.org/10.5194/bg-21-335-2024, https://doi.org/10.5194/bg-21-335-2024, 2024
Short summary
Short summary
Arctic greenhouse gas (GHG) fluxes of CO2, CH4, and N2O are important for climate feedbacks. We combined extensive in situ measurements and remote sensing data to develop machine-learning models to predict GHG fluxes at a 2 m resolution across a tundra landscape. The analysis revealed that the system was a net GHG sink and showed widespread CH4 uptake in upland vegetation types, almost surpassing the high wetland CH4 emissions at the landscape scale.
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023, https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary
Short summary
For the first time, suitable environments for palsas and peat plateaus were modeled for the whole Northern Hemisphere. The hotspots of occurrences were in northern Europe, western Siberia, and subarctic Canada. Climate change was predicted to cause almost complete loss of the studied landforms by the late century. Our predictions filled knowledge gaps in the distribution of the landforms, and they can be utilized in estimation of the pace and impacts of the climate change over northern regions.
Olli Karjalainen, Juha Aalto, Mikhail Z. Kanevskiy, Miska Luoto, and Jan Hjort
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-144, https://doi.org/10.5194/essd-2022-144, 2022
Manuscript not accepted for further review
Short summary
Short summary
The amount of underground ice in the Arctic permafrost has a central role when assessing climate change-induced changes to natural conditions and human activity in the Arctic. Here, we present compilations of field-verified ground ice observations and high-resolution estimates of Northern Hemisphere ground ice content. The data highlight the variability of ground ice contents across the Arctic and provide called-for information to be used in modelling and environmental assessment studies.
Youhua Ran, Xin Li, Guodong Cheng, Jingxin Che, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, Huijun Jin, Jaroslav Obu, Masahiro Hori, Qihao Yu, and Xiaoli Chang
Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022, https://doi.org/10.5194/essd-14-865-2022, 2022
Short summary
Short summary
Datasets including ground temperature, active layer thickness, the probability of permafrost occurrence, and the zonation of hydrothermal condition with a 1 km resolution were released by integrating unprecedentedly large amounts of field data and multisource remote sensing data using multi-statistical\machine-learning models. It updates the understanding of the current thermal state and distribution for permafrost in the Northern Hemisphere.
Related subject area
Discipline: Frozen ground | Subject: Arctic (e.g. Greenland)
Validation of pan-Arctic soil temperatures in modern reanalysis and data assimilation systems
Characterization of atmospheric methane release in the outer Mackenzie River delta from biogenic and thermogenic sources
Accelerated mobilization of organic carbon from retrogressive thaw slumps on the northern Taymyr Peninsula
The importance of freeze–thaw cycles for lateral tracer transport in ice-wedge polygons
The cryostratigraphy of the Yedoma cliff of Sobo-Sise Island (Lena delta) reveals permafrost dynamics in the central Laptev Sea coastal region during the last 52 kyr
Thermokarst lake inception and development in syngenetic ice-wedge polygon terrain during a cooling climatic trend, Bylot Island (Nunavut), eastern Canadian Arctic
The current state and 125 kyr history of permafrost on the Kara Sea shelf: modeling constraints
Estimation of subsurface porosities and thermal conductivities of polygonal tundra by coupled inversion of electrical resistivity, temperature, and moisture content data
A distributed temperature profiling method for assessing spatial variability in ground temperatures in a discontinuous permafrost region of Alaska
Circumpolar patterns of potential mean annual ground temperature based on surface state obtained from microwave satellite data
Tyler C. Herrington, Christopher G. Fletcher, and Heather Kropp
The Cryosphere, 18, 1835–1861, https://doi.org/10.5194/tc-18-1835-2024, https://doi.org/10.5194/tc-18-1835-2024, 2024
Short summary
Short summary
Here we validate soil temperatures from eight reanalysis products across the pan-Arctic and compare their performance to a newly calculated ensemble mean soil temperature product. We find that most product soil temperatures have a relatively large RMSE of 2–9 K. It is found that the ensemble mean product outperforms individual reanalysis products. Therefore, we recommend the ensemble mean soil temperature product for the validation of climate models and for input to hydrological models.
Daniel Wesley, Scott Dallimore, Roger MacLeod, Torsten Sachs, and David Risk
The Cryosphere, 17, 5283–5297, https://doi.org/10.5194/tc-17-5283-2023, https://doi.org/10.5194/tc-17-5283-2023, 2023
Short summary
Short summary
The Mackenzie River delta (MRD) is an ecosystem with high rates of methane production from biologic and geologic sources, but little research has been done to determine how often geologic or biogenic methane is emitted to the atmosphere. Stable carbon isotope analysis was used to identify the source of CH4 at several sites. Stable carbon isotope (δ13C-CH4) signatures ranged from −42 to −88 ‰ δ13C-CH4, indicating that CH4 emission in the MRD is caused by biologic and geologic sources.
Philipp Bernhard, Simon Zwieback, and Irena Hajnsek
The Cryosphere, 16, 2819–2835, https://doi.org/10.5194/tc-16-2819-2022, https://doi.org/10.5194/tc-16-2819-2022, 2022
Short summary
Short summary
With climate change, Arctic hillslopes above ice-rich permafrost are vulnerable to enhanced carbon mobilization. In this work elevation change estimates generated from satellite observations reveal a substantial acceleration of carbon mobilization on the Taymyr Peninsula in Siberia between 2010 and 2021. The strong increase occurring in 2020 coincided with a severe Siberian heatwave and highlights that carbon mobilization can respond sharply and non-linearly to increasing temperatures.
Elchin E. Jafarov, Daniil Svyatsky, Brent Newman, Dylan Harp, David Moulton, and Cathy Wilson
The Cryosphere, 16, 851–862, https://doi.org/10.5194/tc-16-851-2022, https://doi.org/10.5194/tc-16-851-2022, 2022
Short summary
Short summary
Recent research indicates the importance of lateral transport of dissolved carbon in the polygonal tundra, suggesting that the freeze-up period could further promote lateral carbon transport. We conducted subsurface tracer simulations on high-, flat-, and low-centered polygons to test the importance of the freeze–thaw cycle and freeze-up time for tracer mobility. Our findings illustrate the impact of hydraulic and thermal gradients on tracer mobility, as well as of the freeze-up time.
Sebastian Wetterich, Alexander Kizyakov, Michael Fritz, Juliane Wolter, Gesine Mollenhauer, Hanno Meyer, Matthias Fuchs, Aleksei Aksenov, Heidrun Matthes, Lutz Schirrmeister, and Thomas Opel
The Cryosphere, 14, 4525–4551, https://doi.org/10.5194/tc-14-4525-2020, https://doi.org/10.5194/tc-14-4525-2020, 2020
Short summary
Short summary
In the present study, we analysed geochemical and sedimentological properties of relict permafrost and ground ice exposed at the Sobo-Sise Yedoma cliff in the eastern Lena delta in NE Siberia. We obtained insight into permafrost aggradation and degradation over the last approximately 52 000 years and the climatic and morphodynamic controls on regional-scale permafrost dynamics of the central Laptev Sea coastal region.
Frédéric Bouchard, Daniel Fortier, Michel Paquette, Vincent Boucher, Reinhard Pienitz, and Isabelle Laurion
The Cryosphere, 14, 2607–2627, https://doi.org/10.5194/tc-14-2607-2020, https://doi.org/10.5194/tc-14-2607-2020, 2020
Short summary
Short summary
We combine lake mapping, landscape observations and sediment core analyses to document the evolution of a thermokarst (thaw) lake in the Canadian Arctic over the last millennia. We conclude that temperature is not the only driver of thermokarst development, as the lake likely started to form during a cooler period around 2000 years ago. The lake is now located in frozen layers with an organic carbon content that is an order of magnitude higher than the usually reported values across the Arctic.
Anatoliy Gavrilov, Vladimir Pavlov, Alexandr Fridenberg, Mikhail Boldyrev, Vanda Khilimonyuk, Elena Pizhankova, Sergey Buldovich, Natalia Kosevich, Ali Alyautdinov, Mariia Ogienko, Alexander Roslyakov, Maria Cherbunina, and Evgeniy Ospennikov
The Cryosphere, 14, 1857–1873, https://doi.org/10.5194/tc-14-1857-2020, https://doi.org/10.5194/tc-14-1857-2020, 2020
Short summary
Short summary
The geocryological study of the Arctic shelf remains insufficient for economic activity. The article presents a study of its evolution by methods of math modeling of heat transfer in rocks. As a result, a model of the evolution and current state of the cryolithozone of the Kara shelf was created based on ideas about the history of its geocryological development over the past 125 kyr. The modeling results are correlated to the available field data and are presented as a geocryological map.
Elchin E. Jafarov, Dylan R. Harp, Ethan T. Coon, Baptiste Dafflon, Anh Phuong Tran, Adam L. Atchley, Youzuo Lin, and Cathy J. Wilson
The Cryosphere, 14, 77–91, https://doi.org/10.5194/tc-14-77-2020, https://doi.org/10.5194/tc-14-77-2020, 2020
Short summary
Short summary
Improved subsurface parameterization and benchmarking data are needed to reduce current uncertainty in predicting permafrost response to a warming climate. We developed a subsurface parameter estimation framework that can be used to estimate soil properties where subsurface data are available. We utilize diverse geophysical datasets such as electrical resistance data, soil moisture data, and soil temperature data to recover soil porosity and soil thermal conductivity.
Emmanuel Léger, Baptiste Dafflon, Yves Robert, Craig Ulrich, John E. Peterson, Sébastien C. Biraud, Vladimir E. Romanovsky, and Susan S. Hubbard
The Cryosphere, 13, 2853–2867, https://doi.org/10.5194/tc-13-2853-2019, https://doi.org/10.5194/tc-13-2853-2019, 2019
Short summary
Short summary
We propose a new strategy called distributed temperature profiling (DTP) for improving the estimation of soil thermal properties through the use of an unprecedented number of laterally and vertically distributed temperature measurements. We tested a DTP system prototype by moving it sequentially across a discontinuous permafrost environment. The DTP enabled high-resolution identification of near-surface permafrost location and covariability with topography, vegetation, and soil properties.
Christine Kroisleitner, Annett Bartsch, and Helena Bergstedt
The Cryosphere, 12, 2349–2370, https://doi.org/10.5194/tc-12-2349-2018, https://doi.org/10.5194/tc-12-2349-2018, 2018
Short summary
Short summary
Knowledge about permafrost extent is required with respect to climate change. We used borehole temperature records from across the Arctic for the assessment of surface status information (frozen or unfrozen) derived from space-borne microwave sensors for permafrost extent mapping. The comparison to mean annual ground temperature (MAGT) at the coldest sensor depth revealed that not only extent but also temperature can be obtained from C-band-derived surface state with a residual error of 2.22 °C.
Cited articles
Aalto, J., Harrison, S., and Luoto, M.: Statistical modelling predicts
almost complete loss of major periglacial processes in Northern Europe by
2100, Nat. Commun., 8, 515, https://doi.org/10.1038/s41467-017-00669-3,
2017.
Aalto, J., Karjalainen, O., Hjort, J., and Luoto, M.: Statistical
forecasting of current and future circum-Arctic ground temperatures and
active layer thickness, Geophys. Res. Lett., 45, 4889–4898,
https://doi.org/10.1029/2018GL078007, 2018a.
Aalto, J., Scherrer, D., Lenoir, J., Guisan, A., and Luoto, M.:
Biogeophysical controls on soil-atmosphere thermal differences: implications
on warming Arctic ecosystems, Environ. Res. Lett., 13, 074003,
https://doi.org/10.1088/1748-9326/aac83e, 2018b.
AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change
and the Cryosphere, Arctic Monitoring and Assessment Programme (AMAP), Oslo,
Norway, 2017.
Atchley, A. L., Coon, E. T., Painter, S. L., Harp, D. R., and Wilson, C. J.:
Influences and interactions of inundation, peat, and snow on active layer
thickness, Geophys. Res. Lett., 43, 5116–5123,
https://doi.org/10.1002/2016GL068550, 2016.
Bailey, V. L., Bond-Lamberty, B., DeAngelis, K., Grandy, A. S., Hawkes, C.
V., Heckman, K., Lajtha, K., Phillips, R. P., Sulman, B. N., Todd-Brown, K.
E. O., and Wallenstein, M. D.: Soil carbon cycling proxies: understanding
their critical role in predicting climate change feedbacks, Glob. Change
Biol., 24, 895–905, https://doi.org/10.1111/gcb.13926, 2017.
Bartsch, A., Höfler, A., Kroisleitner, C., and Trofaier, A. M.: Land
cover mapping in northern high latitude permafrost regions with satellite
data: achievements and remaining challenges, Remote Sens., 8, 979,
https://doi.org/10.3390/rs8120979, 2016.
Bintanja, R. and Andry, O.: Towards a rain-dominated Arctic, Nat. Clim.
Change, 7, 263–267, https://doi.org/10.1038/nclimate3240, 2017.
Biskaborn, B. K., Lanckman, J.-P., Lantuit, H., Elger, K., Streletskiy, D. A., Cable, W. L., and Romanovsky, V. E.: The new
database of the Global Terrestrial Network for Permafrost (GTN-P), Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015, 2015.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264,
https://doi.org/10.1038/s41467-018-08240-4, 2019.
Bokhorst, S., Højlund Pedersen, S., Brucker, L., Anisimov, O., Bjerke, J.
W., Brown, R. D., Ehrich, D., Essery, R. L. H., Heilig, A., Ingvander, S.,
Johansson C., Johansson, M., Jónsdóttir, I. S., Inga, N., Luojus,
K., Macelloni, G., Mariash, H., McLennan, D., Rosqvist, G. N., Sato, A.,
Savela, H., Schneebeli, M., Sokolov, A., Sokratov, S. A., Terzago, S.,
Vikhamar-Schuler, D.,Williamson, S., Qiu, Y., and Callaghan, T. V.: Changing
Arctic snow cover: a review of recent developments and assessment of future
needs for observations, modelling, and impacts, Ambio, 45, 516–537,
https://doi.org/10.1007/s13280-016-0770-0, 2016.
Bonnaventure, P. P. and Lamoureux, S. F.: The active layer: a conceptual
review of monitoring, modelling techniques and changes in a warming climate,
Prog. Phys. Geog., 37, 352–376, https://doi.org/10.1177/0309133313478314,
2013.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Brown, J., Hinkel, K. M., and Nelson, F. E.: The circumpolar active layer
monitoring (CALM) program: research designs and initial results, Polar Geography, 24, 165–258, 2000.
Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., and Melnikov, E. S.:
Circum-Arctic Map of Permafrost and Ground-Ice Conditions Version 2,
National Snow and Ice Data Center, https://nsidc.org/data/ggd318, 2002.
Callaghan, T. V., Johansson, M., Anisimov, O., Christiansen, H. H.,
Instanes, A., Romanovsky, V. E., and Smith, S.: Changing permafrost and its
impacts, in: Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate
Change and the Cryosphere, Arctic Monitoring and Assessment Programme
(AMAP), Oslo, Norway, 2011.
Chadburn, S. E., Burke, E. J., Cox, P. M., Friedlingstein, P., Hugelius, G.,
and Westermann, S.: An observation-based constraint on permafrost loss as a
function of global warming, Nat. Clim. Change, 7, 340–344,
https://doi.org/10.1038/nclimate3262, 2017.
Didan, K.: MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1 km SIN
Grid V006, NASA EOSDIS LP DAAC, https://doi.org/10.5067/MODIS/MOD13A2.006,
2015.
Etzelmüller, B.: Recent advances in mountain permafrost research,
Permafrost Periglac., 24, 99–107, https://doi.org/10.1002/ppp.1772, 2013.
Etzelmüller, B., Schuler, T. V., Isaksen, K., Christiansen, H. H., Farbrot, H., and Benestad, R.: Modeling the
temperature evolution of Svalbard permafrost during the 20th and 21st century, The Cryosphere, 5, 67–79, https://doi.org/10.5194/tc-5-67-2011, 2011.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D.,
Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The shuttle radar topography mission, Rev. Geophys.,
45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Fiddes, J., Endrizzi, S., and Gruber, S.: Large-area land surface simulations in heterogeneous terrain driven by
global data sets: application to mountain permafrost, The Cryosphere, 9, 411–426, https://doi.org/10.5194/tc-9-411-2015, 2015.
Fisher, J. P., Estop-Aragonés, C., Thierry, A., Charman, D. J., Wolfe,
S. A., Hartley, I. P., Murton, J. B., Williams, M., and Phoenix, G. K.: The
influence of vegetation and soil characteristics on active-layer thickness
of permafrost soils in boreal forest, Glob. Change Biol., 22, 3217–3140,
https://doi.org/10.1111/gcb.13248, 2016.
Frauenfeld, O. W., Zhang, T., and Barry, R. G.: Interdecadal changes in
seasonal freeze and thaw depths in Russia, J. Geophys. Res., 109, D05101,
https://doi.org/10.1029/2003JD004245, 2004.
Frauenfeld, O. W., Zhang, T., and McCreight J. L.: Northern hemisphere
freezing/thawing index variations over the twentieth century, Int. J.
Climatol., 27, 47–63, https://doi.org/10.1002/joc.1372, 2007.
French, H. M.: The Periglacial Environment, 3rd Edn, Wiley, 2007.
Friedman, J., Hastie, T., and Tibshirani, R.: Additive logistic regression:
a statistical view of boosting, Ann. Stat., 28, 337–407,
2000.
Gangodamage, C., Rowland, J. C., Hubbard, S. S., Brumby, S. P., Liljedahl,
A. K., Wainwright, H., Wilson, C. J., Altmann, G. L., Dafflon, B., Peterson,
J., Ulrich, C., Tweedie, C. E., and Wullschleger, S. D.: Extrapolating
active layer thickness measurements across Arctic polygonal terrain using
LiDAR and NDVI data sets, Water Resour. Res., 50, 6339–6357,
https://doi.org/10.1002/2013WR014283, 2014.
Grosse, G., Goetz, S., McGuire, A. D., Romanovsky, V. E., and Schuur, E. A.
G.: Changing permafrost in a warming world and feedbacks to the Earth
system, Environ. Res. Lett., 11, 040201,
https://doi.org/10.1088/1748-9326/11/4/040201, 2016.
Gruber, S., Fleiner, R., Guegan, E., Panday, P., Schmid, M.-O., Stumm, D., Wester, P., Zhang, Y., and Zhao, L.:
Review article: Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region, The
Cryosphere, 11, 81–99, https://doi.org/10.5194/tc-11-81-2017, 2017.
Guo, D., Li, D., and Hua, W.: Quantifying air temperature evolution in the
permafrost region from 1901 to 2014, Int. J. Climatol., 38, 66–76,
https://doi.org/10.1002/joc.5161, 2017.
Harlan, R. L. and Nixon J. F.: Ground thermal regime, in: Geotechnical
Engineering for Cold Regions, edited by: Andersland, O. B. and Anderson, D. M.,
McGraw-Hill, New York, 103–163, 1978.
Hasler, A., Geertsema, M., Foord, V., Gruber, S., and Noetzli, J.: The influence of surface characteristics,
topography and continentality on mountain permafrost in British Columbia, The Cryosphere, 9, 1025–1038, https://doi.org/10.5194/tc-9-1025-2015, 2015.
Hastie, T. J. and Tibshirani, R. J.: Generalized Additive Models, CRC Press,
1990.
Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W.,
and Sykes, M. T.: Methods and uncertainties in bioclimatic envelope
modelling under climate change, Prog. Phys. Geog., 30, 751–777,
https://doi.org/10.1177/0309133306071957, 2006.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Antonio Guevara, M., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m – global gridded soil information based on machine
learning, PLoS ONE 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017 (data available at: https://files.isric.org/soilgrids, last access: 3 January 2018).
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:
Very high resolution interpolated climate surfaces for global land areas,
Int. J Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005 (data available at: https://worldclim.org/current, last access: 1 February 2016).
Hijmans, R. J., Phillips S., Leathwick, J., and Elith, J.: dismo: Species
Distribution Modeling, R package version 1.1-1, available at:
http://cran.r-project.org/web/packages/dismo/index.html,
last access: 16 June 2016.
Hjort, J. and Luoto, M.: Novel theoretical insights into geomorphic
process–environment relationships using simulated response curves, Earth
Surf. Proc. Land., 36, 363–371, https://doi.org/10.1002/esp.2048,
2011.
Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E.,
Nelson, F. E., Etzelmüller, B., and Luoto, M.: Degrading permafrost puts
Arctic infrastructure at risk by mid-century, Nat. Commun., 9, 5147,
https://doi.org/10.1038/s41467-018-07557-4, 2018.
Johnson, K. D., Harden, J. W., McGuire, A. D., Clark, M., Yuan, F., and
Finley, A. O.: Permafrost and organic layer interactions over a climate
gradient in a discontinuous permafrost zone, Environ. Res. Lett., 8, 035028,
https://doi.org/10.1088/1748-9326/8/3/035028, 2013.
Jorgenson, M. T., Romanovsky, V., Harden, J., Shur, Y., O'Donnell, J.,
Schuur, E. A. G., Kanevskiy, M., and Marchenko, S.: Resilience and
vulnerability of permafrost to climate change, Can. J. Forest Res., 40,
1219–1236, https://doi.org/10.1139/X10-060, 2010.
Jorgenson, M. T., Harden, J., Kanevskiy, M., O'Donnell, J., Wickland, K.,
Ewing, S., Manies, K., Zhuang, Q., Shur, Y., Striegl, R., and Koch, J.:
Reorganization of vegetation, hydrology and soil carbon after permafrost
degradation across heterogeneous boreal landscapes, Environ. Res. Lett., 8,
035017, https://doi.org/10.1088/1748-9326/8/3/035017, 2013.
Kane, D. L., Hinkel, K. M., Goering, D. J., Hinzman, L. D., and Outcalt, S.
I.: Non-conductive heat transfer associated with frozen soils, Global Planet.
Change, 29, 275–292, https://doi.org/10.1016/S0921-8181(01)00095-9, 2001.
Kemppinen, J., Niittynen, P., Riihimäki, H., and Luoto, M.: Modelling
soil moisture in a high-latitude landscape using LiDAR and soil data, Earth
Surf. Proc. Land., 43, 1019–1031, https://doi.org/10.1002/esp.4301,
2018.
Kurylyk, B. L., MacQuarrie, K. T. B., and McKenzie, J. M.: Climate change
impacts on groundwater and soil temperatures in cold and temperature
regions: implications, mathematical theory, and emerging simulation tools,
Earth-Sci. Rev., 138, 313–334,
https://doi.org/10.1016/j.earscirev.2014.06.006, 2014.
Lawrence, D. M. and Swenson, S. C.: Permafrost response to increasing Arctic
shrub abundance depends on the relative influence of shrubs on local soil
cooling versus large-scale climate warming, Environ. Res. Lett., 6, 045504,
https://doi.org/10.1088/1748-9326/6/4/045504, 2011.
Liaw, A. and Wiener, M.: Classification and regression by randomForest, R
news 2, 18–22, 2002.
Liljedahl, A. K., Boike J., Daanen, R. P., Fedorov, A. N., Frost, G. V.,
Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N.,
Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D.,
Walker, D. A., Wilson, C. J., Yabuki, H., and Zona, D.: Pan-Arctic ice-wedge
degradation in warming permafrost and its influence on tundra hydrology,
Nat. Geosci., 9, 312–319, https://doi.org/10.1038/ngeo2674, 2016.
Luo, D., Wu, Q., Jin, H., Marchenko, S. S., Lü, L., and Gao, S.: Recent
changes in the active layer thickness across the northern hemisphere,
Environ. Earth Sci., 75, 555, https://doi.org/10.1007/s12665-015-5229-2,
2016.
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., and Thuiller, W.:
Evaluation of consensus methods in predictive species distribution
modelling, Divers. Distrib., 15, 59–69,
https://doi.org/10.1111/j.1472-4642.2008.00491.x, 2009.
Marmy, A., Salzmann, N., Scherler, M., and Hauck, C.: Permafrost model
sensitivity to seasonal climatic changes and extreme events in mountainous
regions, Env. Res. Lett., 8, 035048,
https://doi.org/10.1088/1748-9326/8/3/035048, 2013.
McCullagh, P. and Nelder, J.: Generalized Linear Models, 2nd edn,
Chapman-Hall, London, 1989.
McCune, B. and Keon, D.: Equations for potential annual direct incident
radiation and heat load, J. Veg. Sci., 13, 603–606,
https://doi.org/10.1111/j.1654-1103.2002.tb02087.x, 2002.
Melnikov, E. S., Leibman, M. O., Moskalenko, N. G., and Vasiliev, A. A.:
Active-layer monitoring in the cryolithozone of West Siberia, Polar
Geography, 28, 267–285, https://doi.org/10.1080/789610206, 2004.
Morse, P. D., Burn, C. R., and Kokelj, S. V.: Influence of snow on
near-surface ground temperatures in upland and alluvial environments of the
outer Mackenzie Delta, Northwest Territories, Can. J. Earth Sci., 49,
895–913, https://doi.org/10.1139/E2012-012, 2012.
Nakagawa, S. and Cuthill, I. C.: Effect size, confidence interval and
statistical significance: a practical guide for biologists, Biol. Rev., 82,
591–605, https://doi.org/10.1111/j.1469-185X.2007.00027.x, 2007.
Oelke, C., Zhang, T., Serreze, M. C., and Armstrong, R. L.: Regional-scale
modeling of soil freeze/thaw over the Arctic drainage basin, J. Geophys.
Res., 108, 4314, https:/doi.org/10.1029/2002JD002722, 2003.
Osterkamp, T. E.: Characteristics of the recent warming of permafrost in
Alaska, J. Geophys. Res., 112, F02S02, https://doi.org/10.1029/2006JF000578,
2007.
Park, H., Walsh, J., Fedorov, A. N., Sherstiukov, A. B., Iijima, Y., and Ohata, T.: The influence of
climate and hydrological variables on opposite anomaly in active-layer thickness between Eurasian and North American watersheds,
The Cryosphere, 7, 631–645, https://doi.org/10.5194/tc-7-631-2013, 2013.
Peng, X., Zhang, T., Frauenfeld, O. W., Wang, K., Luo, D., Cao, B., Su, H.,
Jun, H., and Wu, Q.: Spatiotemporal changes in active layer thickness under
contemporary and projected climate in the Northern Hemisphere, J. Climate, 31,
251–266, https://doi.org/10.1175/JCLI-D-16-0721.1, 2018.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria,
available at: https://www.r-project.org/, last access: 10 December 2015.
Romanovsky, V. E. and Osterkamp, T. E.: Effects of unfrozen water on heat
and mass transport processes in the active layer and permafrost, Permafrost
Periglac., 11, 219–239, 2000.
Romanovsky, V. E., Smith, S. L., and Christiansen, H. H.: Permafrost thermal
state in the polar northern hemisphere during the International Polar Year
2007–2009: a synthesis, Permafrost Periglac., 21, 106–116,
https://doi.org/10.1002/ppp.689, 2010.
Romanovsky, V. E., Smith, S. L., Shiklomanov, N. I., Streletskiy, D. A.,
Isaksen, K., Kholodov, A. L., Christiansen, H. H., Drozdov, D. S., Malkova,
G. V., and Marchenko, S. S.: Terrestrial permafrost, B. Am.
Meteorol. Soc., 98, 147–149,
https://doi.org/10.1175/2017BAMSStateoftheClimate.1, 2017.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year
high-resolution global dataset of meteorological forcings for land surface
modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1,
2006 (data available at: http://hydrology.princeton.edu/data.pgf.php, last access: 5 February 2016).
Shiklomanov, N. I.: Non-climatic factors and long-term, continental-scale
changes in seasonally frozen ground, Environ. Res. Lett., 7, 011003,
https://doi.org/10.1088/1748-9326/7/1/011003, 2012.
Smith, M. W. and Riseborough, D. W.: Permafrost monitoring and detection of
climate change, Permafrost Periglac., 7, 301–309, 1996.
Smith, S. and Burgess, M.: Ground temperature database for Northern Canada,
Geological Survey of Canada, Open File Report 3954,
https://doi.org/10.4095/211804, 2000.
Smith, M. W. and Riseborough, D. W.: Climate and the limits of permafrost: a
zonal analysis, Permafrost Periglac., 13, 1–15,
https://doi.org/10.1002/ppp.410, 2002.
Smith, S. L., Wolfe, S. A., Riseborough, D. W., and Nixon, M.: Active-layer
characteristics and summer climate indices, Mackenzie Valley, Northwest
Territories, Canada, Permafrost Periglac., 20, 201–220,
https://doi.org/10.1002/ppp.651, 2009.
Streletskiy, D. A., Anisimov, O., and Vasiliev, A.: Permafrost degradation,
in: Snow and ice-related hazards, risks and disasters, edited by: Haeberli, W. and
Whiteman, C., Elsevier, 303–344, 2015.
Throop, J., Lewkowicz, A. G., and Smith, S. L.: Climate and ground
temperature relations at sites across the continuous and discontinuous
permafrost zones, northern Canada, Can. J. Earth Sci., 49, 865–876,
https://doi.org/10.1139/e11-075, 2012.
Thuiller, W., Lafourcade, B., Engler, R., and Araújo, M. B.: BIOMOD – a
platform for ensemble forecasting of species distribution, Ecography, 32,
369–373, https://doi.org/10.1111/j.1600-0587.2008.05742.x, 2009.
United States Geological Survey: Shuttle Radar Topography Mission, 30 Arc Second Scene SRTM_GTOPO_u30_mosaic,
Global Land Cover Facility, University of Maryland, available at: http://glcf.umd.edu/data/srtm (last access: 22 October 2015), 2004.
Vincent, W. F., Lemay, M., and Allard, M.: Arctic permafrost landscapes in
transition: towards integrated Earth system approach, Arctic Science, 3,
39–64, https://doi.org/10.1139/as-2016-0027, 2017.
Westermann, S., Boike, J., Langer, M., Schuler, T. V., and Etzelmüller, B.: Modeling the impact of wintertime rain
events on the thermal regime of permafrost, The Cryosphere, 5, 945–959, https://doi.org/10.5194/tc-5-945-2011, 2011.
Westermann, S., Duguay, C. R., Grosse, G., and Kääb, A.: Remote
sensing of permafrost and frozen ground, in: Remote Sensing of the
Cryosphere, edited by: Tedesco, M., Wiley, 307–344, 2015.
Woo, M.: Permafrost Hydrology, Springer-Verlag, Berlin Heidelberg, 2012.
Wood, S. N.: Fast stable restricted maximum likelihood and marginal
likelihood estimation of semiparametric generalized linear models, J. R.
Stat. Soc. B, 73, 3–36, 2011.
Wu, Q., Zhang, T., and Liu, Y.: Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway
from 2006 to 2010, The Cryosphere, 6, 607–612, https://doi.org/10.5194/tc-6-607-2012, 2012.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal
regime: an overview, Rev. Geophys., 43, RG4002, https://doi.org/10.1029/2004RG000157, 2005.
Zhang, T., Osterkamp, T. E., and Stamnes, K.: Effects of climate on the
active layer and permafrost on the North Slope of Alaska, USA, Permafrost
Periglac., 8, 45–67, 1997.
Zhang, T., Chen, W., Smith, S. L., Riseborough, D. W., and Cihlar, J.: Soil
temperature in Canada during the twentieth century: complex responses to
atmospheric climate change, J. Geophys. Res, 110, D03112,
https://doi.org/10.1029/2004JD004910, 2005.
Zhang, Y., Chen, W., and Cihlar, J.: A process-based model for quantifying
the impact of climate change on permafrost thermal regimes, J. Geophys.
Res., 108, 4695, https://doi.org/10.1029/2002JD003354, 2003.
Zhang, Y., Sherstiukov, A. B., Qian, B., Kokelj, S. V., and Lantz, T. C.:
Impacts of snow on soil temperature observed across the circumpolar north,
Environ. Res. Lett., 13, 044012, https://doi.org/10.1088/1748-9326/aab1e7,
2018.
Yi, Y., Kimball, J. S., Chen, R. H., Moghaddam, M., Reichle, R. H., Mishra, U., Zona, D., and Oechel, W. C.:
Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska,
The Cryosphere, 12, 145–161, https://doi.org/10.5194/tc-12-145-2018, 2018.
Yin, G., Niu, F., Lin, Z., Luo, J., and Liu, M.: Effects of local factors
and climate on permafrost conditions and distribution in Beiluhe basin,
Qinghai-Tibet Plateau, China, Sci. Total Environ., 581–582, 472–485,
https://doi.org/10.1016/j.scitotenv.2016.12.155, 2017.
Short summary
Using a statistical modelling framework, we examined the environmental factors controlling ground thermal regimes inside and outside the Northern Hemisphere permafrost domain. We found that climatic factors were paramount in both regions, but with varying relative importance and effect size. The relationships were often non-linear, especially in permafrost conditions. Our results suggest that these non-linearities should be accounted for in future ground thermal models at the hemisphere scale.
Using a statistical modelling framework, we examined the environmental factors controlling...