Articles | Volume 13, issue 11
https://doi.org/10.5194/tc-13-3093-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-3093-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Subglacial roughness of the Greenland Ice Sheet: relationship with contemporary ice velocity and geology
Michael A. Cooper
CORRESPONDING AUTHOR
School of Geographical Sciences, University of Bristol, Bristol, UK
now at: Department of Environment and Geography, University of York, York, UK
Thomas M. Jordan
School of Geographical Sciences, University of Bristol, Bristol, UK
Department of Geophysics, Stanford University, Stanford, CA, USA
Dustin M. Schroeder
Department of Geophysics, Stanford University, Stanford, CA, USA
Department of Electrical Engineering, Stanford University, Stanford, CA, USA
Martin J. Siegert
Grantham Institute, Department of Earth Science and Engineering, Imperial College London, London, UK
Christopher N. Williams
School of Geographical Sciences, University of Bristol, Bristol, UK
now at: British Geological Survey, Nottingham, UK
Jonathan L. Bamber
School of Geographical Sciences, University of Bristol, Bristol, UK
Related authors
Michael A. Cooper, Paulina Lewińska, William A. P. Smith, Edwin R. Hancock, Julian A. Dowdeswell, and David M. Rippin
The Cryosphere, 16, 2449–2470, https://doi.org/10.5194/tc-16-2449-2022, https://doi.org/10.5194/tc-16-2449-2022, 2022
Short summary
Short summary
Here we use old photographs gathered several decades ago to expand the temporal record of glacier change in part of East Greenland. This is important because the longer the record of past glacier change, the better we are at predicting future glacier behaviour. Our work also shows that despite all these glaciers retreating, the rate at which they do this varies markedly. It is therefore important to consider outlet glaciers from Greenland individually to take account of this differing behaviour.
Thomas M. Jordan, Christopher N. Williams, Dustin M. Schroeder, Yasmina M. Martos, Michael A. Cooper, Martin J. Siegert, John D. Paden, Philippe Huybrechts, and Jonathan L. Bamber
The Cryosphere, 12, 2831–2854, https://doi.org/10.5194/tc-12-2831-2018, https://doi.org/10.5194/tc-12-2831-2018, 2018
Short summary
Short summary
Here, via analysis of radio-echo sounding data, we place a new observational constraint upon the basal water distribution beneath the Greenland Ice Sheet. In addition to the outlet glaciers, we demonstrate widespread water storage in the northern and eastern ice-sheet interior, a notable feature being a "corridor" of basal water extending from NorthGRIP to Petermann Glacier. The basal water distribution and its relationship with basal temperature provides a new constraint for numerical models.
Thomas M. Jordan, Michael A. Cooper, Dustin M. Schroeder, Christopher N. Williams, John D. Paden, Martin J. Siegert, and Jonathan L. Bamber
The Cryosphere, 11, 1247–1264, https://doi.org/10.5194/tc-11-1247-2017, https://doi.org/10.5194/tc-11-1247-2017, 2017
Short summary
Short summary
Using radio-echo sounding data from northern Greenland, we demonstrate that subglacial roughness exhibits self-affine (fractal) scaling behaviour. This enables us to assess topographic control upon the bed-echo waveform, and explain the spatial distribution of the degree of scattering (specular and diffuse reflections). Via comparison with a prediction for the basal thermal state (thawed and frozen regions of the bed) we discuss the consequences of our study for basal water discrimination.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Adam Igneczi and Jonathan Louis Bamber
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-169, https://doi.org/10.5194/essd-2024-169, 2024
Preprint under review for ESSD
Short summary
Short summary
Freshwater from Arctic land ice loss strongly impacts the Arctic and North Atlantic oceans. Datasets describing this freshwater discharge have low resolution and do not cover the entire Arctic. We statistically enhanced coarse resolution climate model data – from ~6 km to 250 m – and routed meltwater towards the coastlines, to provide high resolution data that is covering all Arctic regions. This approach has far lower computational requirements than running climate models at high resolution.
Nanna B. Karlsson, Dustin M. Schroeder, Louise Sandberg Sørensen, Winnie Chu, Jørgen Dall, Natalia H. Andersen, Reese Dobson, Emma J. Mackie, Simon J. Köhn, Jillian E. Steinmetz, Angelo S. Tarzona, Thomas O. Teisberg, and Niels Skou
Earth Syst. Sci. Data, 16, 3333–3344, https://doi.org/10.5194/essd-16-3333-2024, https://doi.org/10.5194/essd-16-3333-2024, 2024
Short summary
Short summary
In the 1970s, more than 177 000 km of observations were acquired from airborne radar over the Greenland ice sheet. The radar data contain information on not only the thickness of the ice, but also the properties of the ice itself. This information was recorded on film rolls and subsequently stored. In this study, we document the digitization of these film rolls that shed new and unprecedented detailed light on the Greenland ice sheet 50 years ago.
Thomas M. Jordan, Giorgio Dall'Olmo, Gavin Tilstone, Robert J. W. Brewin, Francesco Nencioli, Ruth Airs, Crystal S. Thomas, and Louise Schlüter
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-267, https://doi.org/10.5194/essd-2024-267, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a compilation of water optical properties and phytoplankton pigments from the surface of the Atlantic Ocean collected during nine cruises between 2009–2019. We derive continuous Chlorophyll a concentrations (a biomass proxy) from water absorption. We then illustrate geographical variations and relationships for water optical properties, Chlorophyll a, and the other pigments. The dataset will be useful to researchers in ocean optics, remote-sensing, ecology, and biogeochemistry.
Viola Steidl, Jonathan L. Bamber, and Xiao Xiang Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1732, https://doi.org/10.5194/egusphere-2024-1732, 2024
Short summary
Short summary
Glacier ice thickness is difficult to measure directly but is essential for glacier evolution modelling. In this work, we employ a novel approach combining physical knowledge and data-driven machine learning to estimate the ice thickness of multiple glaciers in Spitsbergen, Barentsøya, and Edgeøya in Svalbard. We identify challenges for the physics-aware machine learning model and opportunities for improving the accuracy and physical consistency that would also apply to other geophysical tasks.
Tian Li, Konrad Heidler, Lichao Mou, Ádám Ignéczi, Xiao Xiang Zhu, and Jonathan L. Bamber
Earth Syst. Sci. Data, 16, 919–939, https://doi.org/10.5194/essd-16-919-2024, https://doi.org/10.5194/essd-16-919-2024, 2024
Short summary
Short summary
Our study uses deep learning to produce a new high-resolution calving front dataset for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, containing 124 919 terminus traces. This dataset offers insights into understanding calving mechanisms and can help improve glacier frontal ablation estimates as a component of the integrated mass balance assessment.
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
The Cryosphere, 17, 1003–1022, https://doi.org/10.5194/tc-17-1003-2023, https://doi.org/10.5194/tc-17-1003-2023, 2023
Short summary
Short summary
The Totten and Moscow University glaciers in East Antarctica have the potential to make a significant contribution to future sea-level rise. We used a combination of different satellite measurements to show that the grounding lines have been retreating along the fast-flowing ice streams across these two glaciers. We also found two tide-modulated ocean channels that might open new pathways for the warm ocean water to enter the ice shelf cavity.
Alexander O. Hager, Matthew J. Hoffman, Stephen F. Price, and Dustin M. Schroeder
The Cryosphere, 16, 3575–3599, https://doi.org/10.5194/tc-16-3575-2022, https://doi.org/10.5194/tc-16-3575-2022, 2022
Short summary
Short summary
The presence of water beneath glaciers is a control on glacier speed and ocean-caused melting, yet it has been unclear whether sizable volumes of water can exist beneath Antarctic glaciers or how this water may flow along the glacier bed. We use computer simulations, supported by observations, to show that enough water exists at the base of Thwaites Glacier, Antarctica, to form "rivers" beneath the glacier. These rivers likely moderate glacier speed and may influence its rate of retreat.
Sam Royston, Rory J. Bingham, and Jonathan L. Bamber
Ocean Sci., 18, 1093–1107, https://doi.org/10.5194/os-18-1093-2022, https://doi.org/10.5194/os-18-1093-2022, 2022
Short summary
Short summary
Decadal sea-level variability masks longer-term changes and increases uncertainty in observed trend and acceleration estimates. We use numerical ocean models to determine the magnitude of decadal variability we might expect in sea-level trends at coastal locations around the world, resulting from natural, internal variability. A proportion of that variability can be replicated from known climate modes, giving a range to add to short- to mid-term projections of regional sea-level trends.
Michael A. Cooper, Paulina Lewińska, William A. P. Smith, Edwin R. Hancock, Julian A. Dowdeswell, and David M. Rippin
The Cryosphere, 16, 2449–2470, https://doi.org/10.5194/tc-16-2449-2022, https://doi.org/10.5194/tc-16-2449-2022, 2022
Short summary
Short summary
Here we use old photographs gathered several decades ago to expand the temporal record of glacier change in part of East Greenland. This is important because the longer the record of past glacier change, the better we are at predicting future glacier behaviour. Our work also shows that despite all these glaciers retreating, the rate at which they do this varies markedly. It is therefore important to consider outlet glaciers from Greenland individually to take account of this differing behaviour.
Stephen J. Chuter, Andrew Zammit-Mangion, Jonathan Rougier, Geoffrey Dawson, and Jonathan L. Bamber
The Cryosphere, 16, 1349–1367, https://doi.org/10.5194/tc-16-1349-2022, https://doi.org/10.5194/tc-16-1349-2022, 2022
Short summary
Short summary
We find the Antarctic Peninsula to have a mean mass loss of 19 ± 1.1 Gt yr−1 over the 2003–2019 period, driven predominantly by changes in ice dynamic flow like due to changes in ocean forcing. This long-term record is crucial to ascertaining the region’s present-day contribution to sea level rise, with the understanding of driving processes enabling better future predictions. Our statistical approach enables us to estimate this previously poorly surveyed regions mass balance more accurately.
Tom Mitcham, G. Hilmar Gudmundsson, and Jonathan L. Bamber
The Cryosphere, 16, 883–901, https://doi.org/10.5194/tc-16-883-2022, https://doi.org/10.5194/tc-16-883-2022, 2022
Short summary
Short summary
We modelled the response of the Larsen C Ice Shelf (LCIS) and its tributary glaciers to the calving of the A68 iceberg and validated our results with observations. We found that the impact was limited, confirming that mostly passive ice was calved. Through further calving experiments we quantified the total buttressing provided by the LCIS and found that over 80 % of the buttressing capacity is generated in the first 5 km of the ice shelf downstream of the grounding line.
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
Earth Syst. Sci. Data, 14, 535–557, https://doi.org/10.5194/essd-14-535-2022, https://doi.org/10.5194/essd-14-535-2022, 2022
Short summary
Short summary
Accurate knowledge of the Antarctic grounding zone is important for mass balance calculation, ice sheet stability assessment, and ice sheet model projections. Here we present the first ICESat-2-derived high-resolution grounding zone product of the Antarctic Ice Sheet, including three important boundaries. This new data product will provide more comprehensive insights into ice sheet instability, which is valuable for both the cryosphere and sea level science communities.
Julie Z. Miller, Riley Culberg, David G. Long, Christopher A. Shuman, Dustin M. Schroeder, and Mary J. Brodzik
The Cryosphere, 16, 103–125, https://doi.org/10.5194/tc-16-103-2022, https://doi.org/10.5194/tc-16-103-2022, 2022
Short summary
Short summary
We use L-band brightness temperature imagery from NASA's Soil Moisture Active Passive (SMAP) satellite to map the extent of perennial firn aquifer and ice slab areas within the Greenland Ice Sheet. As Greenland's climate continues to warm and seasonal surface melting increases in extent, intensity, and duration, quantifying the possible rapid expansion of perennial firn aquifers and ice slab areas has significant implications for understanding the stability of the Greenland Ice Sheet.
Fanny Lehmann, Bramha Dutt Vishwakarma, and Jonathan Bamber
Hydrol. Earth Syst. Sci., 26, 35–54, https://doi.org/10.5194/hess-26-35-2022, https://doi.org/10.5194/hess-26-35-2022, 2022
Short summary
Short summary
Many data sources are available to evaluate components of the water cycle (precipitation, evapotranspiration, runoff, and terrestrial water storage). Despite this variety, it remains unclear how different combinations of datasets satisfy the conservation of mass. We conducted the most comprehensive analysis of water budget closure on a global scale to date. Our results can serve as a basis to select appropriate datasets for regional hydrological studies.
Marie G. P. Cavitte, Duncan A. Young, Robert Mulvaney, Catherine Ritz, Jamin S. Greenbaum, Gregory Ng, Scott D. Kempf, Enrica Quartini, Gail R. Muldoon, John Paden, Massimo Frezzotti, Jason L. Roberts, Carly R. Tozer, Dustin M. Schroeder, and Donald D. Blankenship
Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, https://doi.org/10.5194/essd-13-4759-2021, 2021
Short summary
Short summary
We present a data set consisting of ice-penetrating-radar internal stratigraphy: 26 internal reflecting horizons that cover the greater Dome C area, East Antarctica, the most extensive IRH data set to date in the region. This data set uses radar surveys collected over the span of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground-based surveys in support of the European Beyond EPICA – Oldest Ice (BE-OI) project.
Tun Jan Young, Carlos Martín, Poul Christoffersen, Dustin M. Schroeder, Slawek M. Tulaczyk, and Eliza J. Dawson
The Cryosphere, 15, 4117–4133, https://doi.org/10.5194/tc-15-4117-2021, https://doi.org/10.5194/tc-15-4117-2021, 2021
Short summary
Short summary
If the molecules that make up ice are oriented in specific ways, the ice becomes softer and enhances flow. We use radar to measure the orientation of ice molecules in the top 1400 m of the Western Antarctic Ice Sheet Divide. Our results match those from an ice core extracted 10 years ago and conclude that the ice flow has not changed direction for the last 6700 years. Our methods are straightforward and accurate and can be applied in places across ice sheets unsuitable for ice coring.
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
The Cryosphere, 14, 3629–3643, https://doi.org/10.5194/tc-14-3629-2020, https://doi.org/10.5194/tc-14-3629-2020, 2020
Short summary
Short summary
Accurate knowledge of the Antarctic grounding zone is critical for the understanding of ice sheet instability and the evaluation of mass balance. We present a new, fully automated method to map the grounding zone from ICESat-2 laser altimetry. Our results of Larsen C Ice Shelf demonstrate the efficiency, density, and high spatial accuracy with which ICESat-2 can image complex grounding zones.
Geoffrey J. Dawson and Jonathan L. Bamber
The Cryosphere, 14, 2071–2086, https://doi.org/10.5194/tc-14-2071-2020, https://doi.org/10.5194/tc-14-2071-2020, 2020
Short summary
Short summary
The grounding zone is where grounded ice begins to float and is the boundary at which the ocean has the most significant influence on the inland ice sheet. Here, we present the results of mapping the grounding zone of Antarctic ice shelves from CryoSat-2 radar altimetry. We found good agreement with previous methods that mapped the grounding zone. We also managed to map areas of Support Force Glacier and the Doake Ice Rumples (Filchner–Ronne Ice Shelf), which were previously incompletely mapped.
Marco Meloni, Jerome Bouffard, Tommaso Parrinello, Geoffrey Dawson, Florent Garnier, Veit Helm, Alessandro Di Bella, Stefan Hendricks, Robert Ricker, Erica Webb, Ben Wright, Karina Nielsen, Sanggyun Lee, Marcello Passaro, Michele Scagliola, Sebastian Bjerregaard Simonsen, Louise Sandberg Sørensen, David Brockley, Steven Baker, Sara Fleury, Jonathan Bamber, Luca Maestri, Henriette Skourup, René Forsberg, and Loretta Mizzi
The Cryosphere, 14, 1889–1907, https://doi.org/10.5194/tc-14-1889-2020, https://doi.org/10.5194/tc-14-1889-2020, 2020
Short summary
Short summary
This manuscript aims to describe the evolutions which have been implemented in the new CryoSat Ice processing chain Baseline-D and the validation activities carried out in different domains such as sea ice, land ice and hydrology.
This new CryoSat processing Baseline-D will maximise the uptake and use of CryoSat data by scientific users since it offers improved capability for monitoring the complex and multiscale changes over the cryosphere.
Andres Payo, Bismarck Jigena Antelo, Martin Hurst, Monica Palaseanu-Lovejoy, Chris Williams, Gareth Jenkins, Kathryn Lee, David Favis-Mortlock, Andrew Barkwith, and Michael A. Ellis
Geosci. Model Dev., 11, 4317–4337, https://doi.org/10.5194/gmd-11-4317-2018, https://doi.org/10.5194/gmd-11-4317-2018, 2018
Short summary
Short summary
We describe a new algorithm that automatically delineates the cliff top and toe of a cliffed coastline from a digital elevation model (DEM). The algorithm builds upon existing methods but is specifically designed to resolve very irregular planform coastlines with many bays and capes, such as parts of the coastline of Great Britain.
Thomas M. Jordan, Christopher N. Williams, Dustin M. Schroeder, Yasmina M. Martos, Michael A. Cooper, Martin J. Siegert, John D. Paden, Philippe Huybrechts, and Jonathan L. Bamber
The Cryosphere, 12, 2831–2854, https://doi.org/10.5194/tc-12-2831-2018, https://doi.org/10.5194/tc-12-2831-2018, 2018
Short summary
Short summary
Here, via analysis of radio-echo sounding data, we place a new observational constraint upon the basal water distribution beneath the Greenland Ice Sheet. In addition to the outlet glaciers, we demonstrate widespread water storage in the northern and eastern ice-sheet interior, a notable feature being a "corridor" of basal water extending from NorthGRIP to Petermann Glacier. The basal water distribution and its relationship with basal temperature provides a new constraint for numerical models.
Ingo Sasgen, Alba Martín-Español, Alexander Horvath, Volker Klemann, Elizabeth J. Petrie, Bert Wouters, Martin Horwath, Roland Pail, Jonathan L. Bamber, Peter J. Clarke, Hannes Konrad, Terry Wilson, and Mark R. Drinkwater
Earth Syst. Sci. Data, 10, 493–523, https://doi.org/10.5194/essd-10-493-2018, https://doi.org/10.5194/essd-10-493-2018, 2018
Short summary
Short summary
We present a collection of data sets, consisting of surface-elevation rates for Antarctic ice sheet from a combination of Envisat and ICESat, bedrock uplift rates for 118 GPS sites in Antarctica, and optimally filtered GRACE gravity field rates. We provide viscoelastic response functions to a disc load forcing for Earth structures present in East and West Antarctica. This data collection enables a joint inversion for present-day ice-mass changes and glacial isostatic adjustment in Antarctica.
Andrew J. Tedstone, Jonathan L. Bamber, Joseph M. Cook, Christopher J. Williamson, Xavier Fettweis, Andrew J. Hodson, and Martyn Tranter
The Cryosphere, 11, 2491–2506, https://doi.org/10.5194/tc-11-2491-2017, https://doi.org/10.5194/tc-11-2491-2017, 2017
Short summary
Short summary
The bare ice albedo of the south-west Greenland ice sheet varies dramatically between years. The reasons are unclear but likely involve darkening by inorganic particulates, cryoconite and ice algae. We use satellite imagery to examine dark ice dynamics and climate model outputs to find likely climatological controls. Outcropping particulates can explain the spatial extent of dark ice, but the darkening itself is likely due to ice algae growth controlled by meltwater and light availability.
Thomas M. Jordan, Michael A. Cooper, Dustin M. Schroeder, Christopher N. Williams, John D. Paden, Martin J. Siegert, and Jonathan L. Bamber
The Cryosphere, 11, 1247–1264, https://doi.org/10.5194/tc-11-1247-2017, https://doi.org/10.5194/tc-11-1247-2017, 2017
Short summary
Short summary
Using radio-echo sounding data from northern Greenland, we demonstrate that subglacial roughness exhibits self-affine (fractal) scaling behaviour. This enables us to assess topographic control upon the bed-echo waveform, and explain the spatial distribution of the degree of scattering (specular and diffuse reflections). Via comparison with a prediction for the basal thermal state (thawed and frozen regions of the bed) we discuss the consequences of our study for basal water discrimination.
Christopher N. Williams, Stephen L. Cornford, Thomas M. Jordan, Julian A. Dowdeswell, Martin J. Siegert, Christopher D. Clark, Darrel A. Swift, Andrew Sole, Ian Fenty, and Jonathan L. Bamber
The Cryosphere, 11, 363–380, https://doi.org/10.5194/tc-11-363-2017, https://doi.org/10.5194/tc-11-363-2017, 2017
Short summary
Short summary
Knowledge of ice sheet bed topography and surrounding sea floor bathymetry is integral to the understanding of ice sheet processes. Existing elevation data products for Greenland underestimate fjord bathymetry due to sparse data availability. We present a new method to create physically based synthetic fjord bathymetry to fill these gaps, greatly improving on previously available datasets. This will assist in future elevation product development until further observations become available.
T. M. Jordan, J. L. Bamber, C. N. Williams, J. D. Paden, M. J. Siegert, P. Huybrechts, O. Gagliardini, and F. Gillet-Chaulet
The Cryosphere, 10, 1547–1570, https://doi.org/10.5194/tc-10-1547-2016, https://doi.org/10.5194/tc-10-1547-2016, 2016
Short summary
Short summary
Ice penetrating radar enables determination of the basal properties of ice sheets. Existing algorithms assume stationarity in the attenuation rate, which is not justifiable at an ice sheet scale. We introduce the first ice-sheet-wide algorithm for radar attenuation that incorporates spatial variability, using the temperature field from a numerical model as an initial guess. The study is a step toward ice-sheet-wide data products for basal properties and evaluation of model temperature fields.
Ioana S. Muresan, Shfaqat A. Khan, Andy Aschwanden, Constantine Khroulev, Tonie Van Dam, Jonathan Bamber, Michiel R. van den Broeke, Bert Wouters, Peter Kuipers Munneke, and Kurt H. Kjær
The Cryosphere, 10, 597–611, https://doi.org/10.5194/tc-10-597-2016, https://doi.org/10.5194/tc-10-597-2016, 2016
Short summary
Short summary
We use a regional 3-D outlet glacier model to simulate the behaviour of Jakobshavn Isbræ (JI) during 1990–2014. The model simulates two major accelerations in 1998 and 2003 that are consistent with observations. We find that most of the JI retreat during the simulated period is driven by the ocean parametrization used, and the glacier's subsequent response, which is largely governed by bed geometry. The study shows progress in modelling the temporal variability of the flow at JI.
N. Schoen, A. Zammit-Mangion, J. C. Rougier, T. Flament, F. Rémy, S. Luthcke, and J. L. Bamber
The Cryosphere, 9, 805–819, https://doi.org/10.5194/tc-9-805-2015, https://doi.org/10.5194/tc-9-805-2015, 2015
Short summary
Short summary
This paper provides a proof of concept approach for combining multiple observations and inferences to provide rigorous, error-bounded estimates of mass trends and surface processes for the Antarctic ice sheet. Here we apply the method to West Antarctica, using a time-invariant solution by way of proof of concept. Subsequent work will utilise a time evolving approach to the whole ice sheet.
A. P. Wright, A. M. Le Brocq, S. L. Cornford, R. G. Bingham, H. F. J. Corr, F. Ferraccioli, T. A. Jordan, A. J. Payne, D. M. Rippin, N. Ross, and M. J. Siegert
The Cryosphere, 8, 2119–2134, https://doi.org/10.5194/tc-8-2119-2014, https://doi.org/10.5194/tc-8-2119-2014, 2014
R. T. W. L. Hurkmans, J. L. Bamber, C. H. Davis, I. R. Joughin, K. S. Khvorostovsky, B. S. Smith, and N. Schoen
The Cryosphere, 8, 1725–1740, https://doi.org/10.5194/tc-8-1725-2014, https://doi.org/10.5194/tc-8-1725-2014, 2014
T. Howard, A. K. Pardaens, J. L. Bamber, J. Ridley, G. Spada, R. T. W. L. Hurkmans, J. A. Lowe, and D. Vaughan
Ocean Sci., 10, 473–483, https://doi.org/10.5194/os-10-473-2014, https://doi.org/10.5194/os-10-473-2014, 2014
T. Howard, J. Ridley, A. K. Pardaens, R. T. W. L. Hurkmans, A. J. Payne, R. H. Giesen, J. A. Lowe, J. L. Bamber, T. L. Edwards, and J. Oerlemans
Ocean Sci., 10, 485–500, https://doi.org/10.5194/os-10-485-2014, https://doi.org/10.5194/os-10-485-2014, 2014
I. Sasgen, H. Konrad, E. R. Ivins, M. R. Van den Broeke, J. L. Bamber, Z. Martinec, and V. Klemann
The Cryosphere, 7, 1499–1512, https://doi.org/10.5194/tc-7-1499-2013, https://doi.org/10.5194/tc-7-1499-2013, 2013
I. Joughin, S. B. Das, G. E. Flowers, M. D. Behn, R. B. Alley, M. A. King, B. E. Smith, J. L. Bamber, M. R. van den Broeke, and J. H. van Angelen
The Cryosphere, 7, 1185–1192, https://doi.org/10.5194/tc-7-1185-2013, https://doi.org/10.5194/tc-7-1185-2013, 2013
C. L. Vernon, J. L. Bamber, J. E. Box, M. R. van den Broeke, X. Fettweis, E. Hanna, and P. Huybrechts
The Cryosphere, 7, 599–614, https://doi.org/10.5194/tc-7-599-2013, https://doi.org/10.5194/tc-7-599-2013, 2013
J. L. Bamber, J. A. Griggs, R. T. W. L. Hurkmans, J. A. Dowdeswell, S. P. Gogineni, I. Howat, J. Mouginot, J. Paden, S. Palmer, E. Rignot, and D. Steinhage
The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, https://doi.org/10.5194/tc-7-499-2013, 2013
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, https://doi.org/10.5194/tc-7-375-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Subglacial Processes
Improved monitoring of subglacial lake activity in Greenland
Basal conditions of Denman Glacier from glacier hydrology and ice dynamics modeling
Mapping age and basal conditions of ice in the Dome Fuji region, Antarctica, by combining radar internal layer stratigraphy and flow modeling
Towards modelling of corrugation ridges at ice-sheet grounding lines
Compensating errors in inversions for subglacial bed roughness: same steady state, different dynamic response
Drainage and refill of an Antarctic Peninsula subglacial lake reveal an active subglacial hydrological network
Filling and drainage of a subglacial lake beneath the Flade Isblink ice cap, northeast Greenland
Radar sounding survey over Devon Ice Cap indicates the potential for a diverse hypersaline subglacial hydrological environment
Grounding zone subglacial properties from calibrated active-source seismic methods
Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica
The role of electrical conductivity in radar wave reflection from glacier beds
Review article: Geothermal heat flow in Antarctica: current and future directions
Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream
Subglacial hydrological control on flow of an Antarctic Peninsula palaeo-ice stream
Louise Sandberg Sørensen, Rasmus Bahbah, Sebastian B. Simonsen, Natalia Havelund Andersen, Jade Bowling, Noel Gourmelen, Alex Horton, Nanna B. Karlsson, Amber Leeson, Jennifer Maddalena, Malcolm McMillan, Anne Solgaard, and Birgit Wessel
The Cryosphere, 18, 505–523, https://doi.org/10.5194/tc-18-505-2024, https://doi.org/10.5194/tc-18-505-2024, 2024
Short summary
Short summary
Under the right topographic and hydrological conditions, lakes may form beneath the large ice sheets. Some of these subglacial lakes are active, meaning that they periodically drain and refill. When a subglacial lake drains rapidly, it may cause the ice surface above to collapse, and here we investigate how to improve the monitoring of active subglacial lakes in Greenland by monitoring how their associated collapse basins change over time.
Koi McArthur, Felicity S. McCormack, and Christine F. Dow
The Cryosphere, 17, 4705–4727, https://doi.org/10.5194/tc-17-4705-2023, https://doi.org/10.5194/tc-17-4705-2023, 2023
Short summary
Short summary
Using subglacial hydrology model outputs for Denman Glacier, East Antarctica, we investigated the effects of various friction laws and effective pressure inputs on ice dynamics modeling over the same glacier. The Schoof friction law outperformed the Budd friction law, and effective pressure outputs from the hydrology model outperformed a typically prescribed effective pressure. We propose an empirical prescription of effective pressure to be used in the absence of hydrology model outputs.
Zhuo Wang, Ailsa Chung, Daniel Steinhage, Frédéric Parrenin, Johannes Freitag, and Olaf Eisen
The Cryosphere, 17, 4297–4314, https://doi.org/10.5194/tc-17-4297-2023, https://doi.org/10.5194/tc-17-4297-2023, 2023
Short summary
Short summary
We combine radar-based observed internal layer stratigraphy of the ice sheet with a 1-D ice flow model in the Dome Fuji region. This results in maps of age and age density of the basal ice, the basal thermal conditions, and reconstructed accumulation rates. Based on modeled age we then identify four potential candidates for ice which is potentially 1.5 Myr old. Our map of basal thermal conditions indicates that melting prevails over the presence of stagnant ice in the study area.
Kelly A. Hogan, Katarzyna L. P. Warburton, Alastair G. C. Graham, Jerome A. Neufeld, Duncan R. Hewitt, Julian A. Dowdeswell, and Robert D. Larter
The Cryosphere, 17, 2645–2664, https://doi.org/10.5194/tc-17-2645-2023, https://doi.org/10.5194/tc-17-2645-2023, 2023
Short summary
Short summary
Delicate sea floor ridges – corrugation ridges – that form by tidal motion at Antarctic grounding lines record extremely fast retreat of ice streams in the past. Here we use a mathematical model, constrained by real-world observations from Thwaites Glacier, West Antarctica, to explore how corrugation ridges form. We identify
till extrusion, whereby deformable sediment is squeezed out from under the ice like toothpaste as it settles down at each low-tide position, as the most likely process.
Constantijn J. Berends, Roderik S. W. van de Wal, Tim van den Akker, and William H. Lipscomb
The Cryosphere, 17, 1585–1600, https://doi.org/10.5194/tc-17-1585-2023, https://doi.org/10.5194/tc-17-1585-2023, 2023
Short summary
Short summary
The rate at which the Antarctic ice sheet will melt because of anthropogenic climate change is uncertain. Part of this uncertainty stems from processes occurring beneath the ice, such as the way the ice slides over the underlying bedrock.
Inversion methodsattempt to use observations of the ice-sheet surface to calculate how these sliding processes work. We show that such methods cannot fully solve this problem, so a substantial uncertainty still remains in projections of sea-level rise.
Dominic A. Hodgson, Tom A. Jordan, Neil Ross, Teal R. Riley, and Peter T. Fretwell
The Cryosphere, 16, 4797–4809, https://doi.org/10.5194/tc-16-4797-2022, https://doi.org/10.5194/tc-16-4797-2022, 2022
Short summary
Short summary
This paper describes the drainage (and refill) of a subglacial lake on the Antarctic Peninsula resulting in the collapse of the overlying ice into the newly formed subglacial cavity. It provides evidence of an active hydrological network under the region's glaciers and close coupling between surface climate processes and the base of the ice.
Qi Liang, Wanxin Xiao, Ian Howat, Xiao Cheng, Fengming Hui, Zhuoqi Chen, Mi Jiang, and Lei Zheng
The Cryosphere, 16, 2671–2681, https://doi.org/10.5194/tc-16-2671-2022, https://doi.org/10.5194/tc-16-2671-2022, 2022
Short summary
Short summary
Using multi-temporal ArcticDEM and ICESat-2 altimetry data, we document changes in surface elevation of a subglacial lake basin from 2012 to 2021. The long-term measurements show that the subglacial lake was recharged by surface meltwater and that a rapid drainage event in late August 2019 induced an abrupt ice velocity change. Multiple factors regulate the episodic filling and drainage of the lake. Our study also reveals ~ 64 % of the surface meltwater successfully descended to the bed.
Anja Rutishauser, Donald D. Blankenship, Duncan A. Young, Natalie S. Wolfenbarger, Lucas H. Beem, Mark L. Skidmore, Ashley Dubnick, and Alison S. Criscitiello
The Cryosphere, 16, 379–395, https://doi.org/10.5194/tc-16-379-2022, https://doi.org/10.5194/tc-16-379-2022, 2022
Short summary
Short summary
Recently, a hypersaline subglacial lake complex was hypothesized to lie beneath Devon Ice Cap, Canadian Arctic. Here, we present results from a follow-on targeted aerogeophysical survey. Our results support the evidence for a hypersaline subglacial lake and reveal an extensive brine network, suggesting more complex subglacial hydrological conditions than previously inferred. This hypersaline system may host microbial habitats, making it a compelling analog for bines on other icy worlds.
Huw J. Horgan, Laurine van Haastrecht, Richard B. Alley, Sridhar Anandakrishnan, Lucas H. Beem, Knut Christianson, Atsuhiro Muto, and Matthew R. Siegfried
The Cryosphere, 15, 1863–1880, https://doi.org/10.5194/tc-15-1863-2021, https://doi.org/10.5194/tc-15-1863-2021, 2021
Short summary
Short summary
The grounding zone marks the transition from a grounded ice sheet to a floating ice shelf. Like Earth's coastlines, the grounding zone is home to interactions between the ocean, fresh water, and geology but also has added complexity and importance due to the overriding ice. Here we use seismic surveying – sending sound waves down through the ice – to image the grounding zone of Whillans Ice Stream in West Antarctica and learn more about the nature of this important transition zone.
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Slawek M. Tulaczyk and Neil T. Foley
The Cryosphere, 14, 4495–4506, https://doi.org/10.5194/tc-14-4495-2020, https://doi.org/10.5194/tc-14-4495-2020, 2020
Short summary
Short summary
Much of what we know about materials hidden beneath glaciers and ice sheets on Earth has been interpreted using radar reflection from the ice base. A common assumption is that electrical conductivity of the sub-ice materials does not influence the reflection strength and that the latter is controlled only by permittivity, which depends on the fraction of water in these materials. Here we argue that sub-ice electrical conductivity should be generally considered when interpreting radar records.
Alex Burton-Johnson, Ricarda Dziadek, and Carlos Martin
The Cryosphere, 14, 3843–3873, https://doi.org/10.5194/tc-14-3843-2020, https://doi.org/10.5194/tc-14-3843-2020, 2020
Short summary
Short summary
The Antarctic ice sheet is the largest source for sea level rise. However, one key control on ice sheet flow remains poorly constrained: the effect of heat from the rocks beneath the ice sheet (known as
geothermal heat flow). Although this may not seem like a lot of heat, beneath thick, slow ice this heat can control how well the ice flows and can lead to melting of the ice sheet. We discuss the methods used to estimate this heat, compile existing data, and recommend future research.
Silje Smith-Johnsen, Basile de Fleurian, Nicole Schlegel, Helene Seroussi, and Kerim Nisancioglu
The Cryosphere, 14, 841–854, https://doi.org/10.5194/tc-14-841-2020, https://doi.org/10.5194/tc-14-841-2020, 2020
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) drains a large part of Greenland and displays fast flow far inland. However, the flow pattern is not well represented in ice sheet models. The fast flow has been explained by abnormally high geothermal heat flux. The heat melts the base of the ice sheet and the water produced may lubricate the bed and induce fast flow. By including high geothermal heat flux and a hydrology model, we successfully reproduce NEGIS flow pattern in an ice sheet model.
Robert D. Larter, Kelly A. Hogan, Claus-Dieter Hillenbrand, James A. Smith, Christine L. Batchelor, Matthieu Cartigny, Alex J. Tate, James D. Kirkham, Zoë A. Roseby, Gerhard Kuhn, Alastair G. C. Graham, and Julian A. Dowdeswell
The Cryosphere, 13, 1583–1596, https://doi.org/10.5194/tc-13-1583-2019, https://doi.org/10.5194/tc-13-1583-2019, 2019
Short summary
Short summary
We present high-resolution bathymetry data that provide the most complete and detailed imagery of any Antarctic palaeo-ice stream bed. These data show how subglacial water was delivered to and influenced the dynamic behaviour of the ice stream. Our observations provide insights relevant to understanding the behaviour of modern ice streams and forecasting the contributions that they will make to future sea level rise.
Cited articles
Alley, R. B., Blankenship, D. D., Bentley, C. R., and Rooney, S. T.:
Deformation of till beneath ice stream B, West Antarctica, Nature, 322,
57–59, https://doi.org/10.1038/322057a0, 1986. a, b
Arthern, R. J., Hindmarsh, R. C. A., and Williams, C. R.: Flow speed within the
Antarctic ice sheet and its controls inferred from satellite observations,
J. Geophys. Res.-Earth Surf., 120, 1171–1188,
https://doi.org/10.1002/2014JF003239,
2015. a
Bamber, J. L., Siegert, M. J., Griggs, J. A., Marshall, S. J., and Spada, G.:
Paleofluvial mega-canyon beneath the central Greenland Ice
Sheet, Science, 341, 997–999, https://doi.org/10.1126/science.1239794, 2013.
a
Berry, M. V.: The statistical properties of echoes diffracted from rough
surfaces, Philos. Trans. Roy. Soc. London
A, 273, 611–654, https://doi.org/10.1098/rsta.1973.0019,
1973. a, b, c, d
Berry, M. V.: Theory of radio echoes from glacier beds, J.
Glaciol., 15, 65–74, https://doi.org/10.3189/S0022143000034274,
1975. a
Bingham, R. G., Siegert, M. J., Young, D. A., and Blankenship, D. D.: Organized
flow from the South Pole to the Filchner-Ronne ice shelf: An
assessment of balance velocities in interior East Antarctica using radio
echo sounding data, J. Geophys. Res.-Earth Surf., 112, F03S26,
https://doi.org/10.1029/2006JF000556,
2007. a
Bingham, R. G., Rippin, D. M., Karlsson, N. B., Corr, H. F. J., Ferraccioli,
F., Jordan, T. A., Le Brocq, A. M., Rose, K. C., Ross, N., and Siegert,
M. J.: Ice-flow structure and ice dynamic changes in the Weddell Sea
sector of West Antarctica from radar-imaged internal layering, J. Geophys. Res.-Earth Surf., 120, 2014JF003291,
https://doi.org/10.1002/2014JF003291,
2015. a
Bingham, R. G., Vaughan, D. G., King, E. C., Davies, D., Cornford, S. L.,
Smith, A. M., Arthern, R. J., Brisbourne, A. M., De Rydt, J., Graham, A.
G. C., Spagnolo, M., Marsh, O. J., and Shean, D. E.: Diverse landscapes
beneath Pine Island Glacier influence ice flow, Nat. Commun.,
8, 1618, https://doi.org/10.1038/s41467-017-01597-y, 2017. a, b, c, d, e, f, g, h
Blankenship, D. D., Bentley, C. R., Rooney, S. T., and Alley, R. B.: Seismic
measurements reveal a saturated porous layer beneath an active Antarctic
ice stream, Nature, 322, 54–57, https://doi.org/10.1038/322054a0, 1986. a
Bougamont, M., Christoffersen, P., A. L, H., Fitzpatrick, A. A., Doyle, S. H.,
and Carter, S. P.: Sensitive response of the Greenland Ice Sheet to
surface melt drainage over a soft bed, Nat. Commun., 5, 5052,
https://doi.org/10.1038/ncomms6052, 2014. a, b, c
Brondex, J., Gagliardini, O., Gillet-Chaulet, F., and Durand, G.: Sensitivity
of grounding line dynamics to the choice of the friction law, J.
Glaciol., 63, 854–866, https://doi.org/10.1017/jog.2017.51,
2017. a, b
Christianson, K., Peters, L. E., Alley, R. B., Anandakrishnan, S., Jacobel,
R. W., Riverman, K. L., Muto, A., and Keisling, B. A.: Dilatant till
facilitates ice-stream flow in northeast Greenland, Earth Planet.
Sci. Lett., 401, 57–69, https://doi.org/10.1016/j.epsl.2014.05.060,
2014. a, b
Chu, W., Schroeder, D. M., Seroussi, H., Creyts, T. T., and Bell, R. E.:
Complex basal thermal transition near the onset of Petermann
Glacier, Greenland, J. Geophys. Res.-Earth Surf., 123,
985–995, https://doi.org/10.1029/2017JF004561,
2018. a
Clarke, G. K.: Subglacial processes, Annu. Rev. Earth Planet.
Sci., 33, 247–276, https://doi.org/10.1146/annurev.earth.33.092203.122621,
2004. a
Cooper, M. A., Jordan, T. M., Schroeder, D. M., Siegert, M. J., Williams, C. N., and Bamber, J. L.: Subglacial bed roughness of Greenland, provided using two independent metrics, Dicovery Metadata System, https://doi.org/10.5285/6071926f-32e0-4681-a50d-aab08f42c08a, 2018. a
Durand, G., Gagliardini, O., Favier, L., Zwinger, T., and Meur, E. l.: Impact
of bedrock description on modeling ice sheet dynamics, Geophys. Res.
Lett., 38, L20501, https://doi.org/10.1029/2011GL048892,
2011. a, b
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and
van den Broeke, M. R.: An improved mass budget for the Greenland ice sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010,
2014. a
Falcini, F. A. M., Rippin, D. M., Krabbendam, M., and Selby, K. A.: Quantifying
bed roughness beneath contemporary and palaeo-ice streams, J.
Glaciol., 64, 822–834, https://doi.org/10.1017/jog.2018.71,
2018. a, b
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., and Gallée, H.: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model, The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, 2017. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a
Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz, C., Zwinger, T., Greve, R., and Vaughan, D. G.: Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model, The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, 2012. a
Goff, J. A., Powell, E. M., Young, D. A., and Blankenship, D. D.: Conditional
simulation of Thwaites Glacier (Antarctica) bed topography for flow
models: Incorporating inhomogeneous statistics and channelized morphology,
J. Glaciol., 60, 635–646, https://doi.org/10.3189/2014JoG13J200,
2014. a
Gogineni, S., Tammana, D., Braaten, D., Leuschen, C., Akins, T., Legarsky, J.,
Kanagaratnam, P., Stiles, J., Allen, C., and Jezek, K.: Coherent radar ice
thickness measurements over the Greenland ice sheet, J.
Geophys. Res.-Atmos., 106, 33761–33772,
https://doi.org/10.1029/2001JD900183,
2001. a
Gogineni, S., Yan, J.-B., Paden, J., Leuschen, C., Li, J., Rodriguez-Morales,
F., Braaten, D., Purdon, K., Wang, Z., Liu, W., and Gauch, J.: Bed
topography of Jakobshavn Isbrae, Greenland, and Byrd Glacier,
Antarctica, J. Glaciol., 60, 813–833,
https://doi.org/10.3189/2014JoG14J129, 2014. a
Gorman, M. R. and Siegert, M. J.: Penetration of Antarctic subglacial lakes
by VHF electromagnetic pulses: Information on the depth and electrical
conductivity of basal water bodies, J. Geophys. Res.-Solid
Earth, 104, 29311–29320, https://doi.org/10.1029/1999JB900271,
1999. a
Grima, C., Schroeder, D. M., Blankenship, D. D., and Young, D. A.: Planetary
landing-zone reconnaissance using ice-penetrating radar data: Concept
validation in Antarctica, Planet. Space Sci., 103, 191–204,
https://doi.org/10.1016/j.pss.2014.07.018,
2014. a, b
Gudlaugsson, E., Humbert, A., Winsborrow, M., and Andreassen, K.: Subglacial
roughness of the former Barents Sea ice sheet, J. Geophys.
Res.-Earth Surf., 118, 2546–2556, https://doi.org/10.1002/2013JF002714,
2013. a
Haynes, M. S., Chapin, E., and Schroeder, D. M.: Geometric Power Fall-Off
in Radar Sounding, IEEE Trans. Geosci. Remote Sens.,
56, 6571–6585, https://doi.org/10.1109/TGRS.2018.2840511, 2018. a
Hofer, S., Tedstone, A. J., Fettweis, X., and Bamber, J. L.: Decreasing cloud
cover drives the recent mass loss on the Greenland Ice Sheet, Sci.
Adv., 3, e1700584, https://doi.org/10.1126/sciadv.1700584, 2017. a
Hofstede, C., Christoffersen, P., Hubbard, B., Doyle, S. H., Young, T. J.,
Diez, A., Eisen, O., and Hubbard, A.: Physical Conditions of Fast
Glacier Flow: 2. Variable Extent of Anisotropic Ice and Soft
Basal Sediment From Seismic Reflection Data Acquired on Store
Glacier, West Greenland, J. Geophys. Res.-Earth
Surf., 123, 349–362, https://doi.org/10.1002/2017JF004297,.
2018. a
Hubbard, B., Siegert, M. J., and McCarroll, D.: Spectral roughness of
glaciated bedrock geomorphic surfaces: Implications for glacier sliding,
J. Geophys. Res.-Solid Earth, 105, 21295–21303,
https://doi.org/10.1029/2000JB900162,
2000. a, b, c
Huybrechts, P.: The present evolution of the Greenland ice sheet: an
assessment by modelling, Global Planet. Change, 9, 39–51,
https://doi.org/10.1016/0921-8181(94)90006-X,
1994. a
Iverson, N. R. and Zoet, L. K.: Experiments on the dynamics and sedimentary
products of glacier slip, Geomorphology, 244, 121–134,
https://doi.org/10.1016/j.geomorph.2015.03.027,
2015. a, b
Jeofry, H., Ross, N., Le Brocq, A., Graham, A. G. C., Li, J., Gogineni, P.,
Morlighem, M., Jordan, T., and Siegert, M. J.: Hard rock landforms generate
130 km ice shelf channels through water focusing in basal corrugations,
Nat. Commun., 9, 4576, https://doi.org/10.1038/s41467-018-06679-z, 2018. a
Jordan, T. M., Cooper, M. A., Schroeder, D. M., Williams, C. N., Paden, J. D., Siegert, M. J., and Bamber, J. L.: Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland, The Cryosphere, 11, 1247–1264, https://doi.org/10.5194/tc-11-1247-2017, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x
Jordan, T. M., Williams, C. N., Schroeder, D. M., Martos, Y. M., Cooper, M. A., Siegert, M. J., Paden, J. D., Huybrechts, P., and Bamber, J. L.: A constraint upon the basal water distribution and thermal state of the Greenland Ice Sheet from radar bed echoes, The Cryosphere, 12, 2831–2854, https://doi.org/10.5194/tc-12-2831-2018, 2018. a, b, c
Joughin, I., Tulaczyk, S., Bamber, J. L., Blankenship, D., Holt, J. W.,
Scambos, T., and Vaughan, D. G.: Basal conditions for Pine Island and
Thwaites Glaciers, West Antarctica, determined using satellite and
airborne data, J. Glaciol., 55, 245–257,
https://doi.org/10.3189/002214309788608705, 2009. a
Joughin, I., Smith, B. E., and Howat, I. M.: A complete map of Greenland ice
velocity derived from satellite data collected over 20 years, J.
Glaciol., 64, 1–11, https://doi.org/10.1017/jog.2017.73,
2017. a
King, E. C., Hindmarsh, R. C. A., and Stokes, C. R.: Formation of mega-scale
glacial lineations observed beneath a West Antarctic ice stream, Nat.
Geosci., 2, 585–588, https://doi.org/10.1038/ngeo581, 2009. a, b
Kjær, K. H., Larsen, N. K., Binder, T., Bjørk, A. A., Eisen, O.,
Fahnestock, M. A., Funder, S., Garde, A. A., Haack, H., Helm, V.,
Houmark-Nielsen, M., Kjeldsen, K. K., Khan, S. A., Machguth, H., McDonald,
I., Morlighem, M., Mouginot, J., Paden, J. D., Waight, T. E., Weikusat, C.,
Willerslev, E., and MacGregor, J. A.: A large impact crater beneath
Hiawatha Glacier in northwest Greenland, Sci. Adv., 4, eaar8173,
https://doi.org/10.1126/sciadv.aar8173, 2018. a, b
Kulessa, B., Hubbard, A. L., Booth, A. D., Bougamont, M., Dow, C. F., Doyle,
S. H., Christoffersen, P., Lindbäck, K., Pettersson, R., Fitzpatrick, A.
A. W., and Jones, G. A.: Seismic evidence for complex sedimentary control of
Greenland Ice Sheet flow, Sci. Adv., 3, e1603071,
https://doi.org/10.1126/sciadv.1603071 2017. a
Li, X., Sun, B., Siegert, M. J., Bingham, R. G., Tang, X., Zhang, D., Cui, X.,
and Zhang, X.: Characterization of subglacial landscapes by a two-parameter
roughness index, J. Glaciol., 56, 831–836,
https://doi.org/10.3189/002214310794457326, 2010. a, b
MacGregor, J. A., Catania, G. A., Conway, H., Schroeder, D. M., Joughin, I.,
Young, D. A., Kempf, S. D., and Blankenship, D. D.: Weak bed control of the
eastern shear margin of Thwaites Glacier, West Antarctica, J.
Glaciol., 59, 900–912, https://doi.org/10.3189/2013JoG13J050,
2013. a
MacGregor, J. A., Fahnestock, M. A., Catania, G. A., Paden, J. D.,
Prasad Gogineni, S., Young, S. K., Rybarski, S. C., Mabrey, A. N., Wagman,
B. M., and Morlighem, M.: Radiostratigraphy and age structure of the
Greenland Ice Sheet, J. Geophys. Res.-Earth Surf.,
120, 212–241, https://doi.org/10.1002/2014JF003215,
2015. a, b
MacGregor, J. A., Fahnestock, M. A., Catania, G. A., Aschwanden, A., Clow,
G. D., Colgan, W. T., Gogineni, P. S., Morlighem, M., Nowicki, S. M. J.,
Paden, J. D., Price, S. F., and Seroussi, H.: A synthesis of the basal
thermal state of the Greenland Ice Sheet, J. Geophys.
Res.-Earth Surf., 1328–1350, https://doi.org/10.1002/2015JF003803,
2016. a, b, c, d, e, f, g, h, i
Martos, Y. M., Jordan, T. A., Catalán, M., Jordan, T. M., Bamber, J. L.,
and Vaughan, D. G.: Geothermal heat flux reveals the Iceland
hotspot track underneath Greenland, Geophys. Res. Lett., 45, 8214–8222,
https://doi.org/10.1029/2018GL078289,
2018. a
McMillan, M., Leeson, A., Shepherd, A., Briggs, K., Armitage, T. W. K., Hogg,
A., Munneke, P. K., Broeke, M. v. d., Noël, B., Berg, W. J. v. d.,
Ligtenberg, S., Horwath, M., Groh, A., Muir, A., and Gilbert, L.: A
high-resolution record of Greenland mass balance, Geophys. Res.
Lett., 43, 7002–7010, https://doi.org/10.1002/2016GL069666,
2016. a
Minchew, B. M., Meyer, C. R., Pegler, S. S., Lipovsky, B. P., Rempel, A. W.,
Gudmundsson, G. H., and Iverson, N. R.: Comment on
“Friction at the bed does not control fast glacier
flow”, Science, 363, doi10.1126/science.aau6055,
2019. a
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber,
J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty,
I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M.,
Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y.,
O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and
Zinglersen, K. B.: BedMachine v3: Complete bed topography and ocean
bathymetry Mapping of Greenland from multibeam echo sounding
combined with mass conservation, Geophys. Res. Lett., 44,
11051–11061, https://doi.org/10.1002/2017GL074954,
2017. a, b, c, d, e, f, g
Mottram, R., B. Simonsen, S., Høyer Svendsen, S., Barletta, V. R.,
Sandberg Sørensen, L., Nagler, T., Wuite, J., Groh, A., Horwath, M.,
Rosier, J., Solgaard, A., Hvidberg, C. S., and Forsberg, R.: An Integrated
View of Greenland Ice Sheet Mass Changes Based on Models and
Satellite Observations, Remote Sens., 11, 1407,
https://doi.org/10.3390/rs11121407, 2019. a, b
Mouginot, J., Rignot, E., Bjørk, A. A., Broeke, M. v. d., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P.
Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019. a
Neal, C. S.: Radio Echo Determination of Basal Roughness
Characteristics on the Ross Ice Shelf, Ann. Glaciol., 3,
216–221, https://doi.org/10.1017/S0260305500002809, 1982. a
Nick, F. M., Vieli, A., Andersen, M. L., Joughin, I., Payne, A., Edwards,
T. L., Pattyn, F., and van de Wal, R. S. W.: Future sea-level rise from
Greenland's main outlet glaciers in a warming climate, Nature, 497,
235–238, https://doi.org/10.1038/nature12068, 2013. a
Oswald, G. K. A., Rezvanbehbahani, S., and Stearns, L. A.: Radar evidence of
ponded subglacial water in Greenland, J. Glaciol., 64, 711–729, 1–19,
https://doi.org/10.1017/jog.2018.60,
2018. a, b
Peters, L. E., Anandakrishnan, S., Alley, R. B., Winberry, J. P., Voigt, D. E.,
Smith, A. M., and Morse, D. L.: Subglacial sediments as a control on the
onset and location of two Siple Coast ice streams, West Antarctica,
J. Geophys. Res.-Solid Earth, 111, B01302,
https://doi.org/10.1029/2005JB003766,
2006. a, b, c
Peters, M. E., Blankenship, D. D., and Morse, D. L.: Analysis techniques for
coherent airborne radar sounding: Application to West Antarctic ice
streams, J. Geophys. Res.-Solid Earth, 110, B06303,
https://doi.org/10.1029/2004JB003222,
2005. a, b, c
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts,
J. T. M.: Acceleration of the contribution of the Greenland and
Antarctic ice sheets to sea level rise, Geophys. Res. Lett., 38,
L05503, https://doi.org/10.1029/2011GL046583,
2011. a
Rippin, D., Vaughan, D., and Corr, H.: The basal roughness of Pine Island
Glacier, West Antarctica, J. Glaciol., 57, 67–76,
https://doi.org/10.3189/002214311795306574, 2011. a, b, c
Rippin, D. M., Bingham, R. G., Jordan, T. A., Wright, A. P., Ross, N., Corr, H.
F. J., Ferraccioli, F., Le Brocq, A. M., Rose, K. C., and Siegert, M. J.:
Basal roughness of the Institute and Möller Ice Streams, West
Antarctica: Process determination and landscape interpretation,
Geomorphology, 214, 139–147, https://doi.org/10.1016/j.geomorph.2014.01.021,
2014. a, b, c, d, e, f, g, h, i, j, k
Rodriguez-Morales, F., Gogineni, S., Leuschen, C. J., Paden, J. D., Li, J.,
Lewis, C. C., Panzer, B., Alvestegui, D. G.-G., Patel, A., Byers, K., Crowe,
R., Player, K., Hale, R. D., Arnold, E. J., Smith, L., Gifford, C. M.,
Braaten, D., and Panton, C.: Advanced Multifrequency Radar
Instrumentation for Polar Research, IEEE Trans. Geosci.
Remote Sens., 52, 2824–2842, https://doi.org/10.1109/TGRS.2013.2266415, 2014. a, b, c
Rogozhina, I., Petrunin, A. G., Vaughan, A. P. M., Steinberger, B., Johnson,
J. V., Kaban, M. K., Calov, R., Rickers, F., Thomas, M., and Koulakov, I.:
Melting at the base of the Greenland ice sheet explained by Iceland
hotspot history, Nat. Geosci., 9, 366–369, https://doi.org/10.1038/ngeo2689,
2016. a
Rose, K. C., Ross, N., Jordan, T. A., Bingham, R. G., Corr, H. F. J.,
Ferraccioli, F., Le Brocq, A. M., Rippin, D. M., and Siegert, M. J.: Ancient
pre-glacial erosion surfaces preserved beneath the West Antarctic Ice
Sheet, Earth Surf. Dynam., 3, 139–152, https://doi.org/10.5194/esurf-3-139-2015, 2015. a
Schroeder, D. M., Blankenship, D. D., and Young, D. A.: Evidence for a water
system transition beneath Thwaites Glacier, West Antarctica,
P. Natl. Acad. Sci. USA, 110, 12225–12228, https://doi.org/10.1073/pnas.1302828110, 2013. a, b
Schroeder, D. M., Blankenship, D. D., Young, D. A., Witus, A. E., and Anderson,
J. B.: Airborne radar sounding evidence for deformable sediments and
outcropping bedrock beneath Thwaites Glacier, West Antarctica,
Geophys. Res. Lett., 41, 7200–7208, https://doi.org/10.1002/2014GL061645,
2014. a, b, c, d, e, f
Schroeder, D. M., Blankenship, D. D., Raney, R. K., and Grima, C.: Estimating
subglacial water geometry using radar bed echo specularity:
Application to Thwaites Glacier, West Antarctica, IEEE Geosci.
Remote Sens. Lett., 12, 443–447, https://doi.org/10.1109/LGRS.2014.2337878,
2015. a, b, c, d
Shepard, M. K. and Campbell, B. A.: Radar scattering from a self-affine
fractal surface: Near-Nadir regime, Icarus, 141, 156–171,
https://doi.org/10.1006/icar.1999.6141,
1999. a, b, c, d
Shepard, M. K., Brackett, R. A., and Arvidson, R. E.: Self-affine (fractal)
topography: Surface parameterization and radar scattering, J.
Geophys. Res.-Planets, 100, 11709–11718,
https://doi.org/10.1029/95JE00664,
1995. a, b
Shepard, M. K., Campbell, B. A., Bulmer, M. H., Farr, T. G., Gaddis, L. R., and
Plaut, J. J.: The roughness of natural terrain: A planetary and remote
sensing perspective, J. Geophys. Res.-Planets, 106,
32777–32795, https://doi.org/10.1029/2000JE001429,
2001. a, b, c
Siegert, M. J., Ross, N., Li, J., Schroeder, D. M., Rippin, D., Ashmore, D.,
Bingham, R., and Gogineni, P.: Subglacial controls on the flow of Institute
Ice Stream, West Antarctica, Ann. Glaciol., 57, 19–24,
https://doi.org/10.1017/aog.2016.17,
2016. a, b, c
Smith, M. W.: Roughness in the earth sciences, Earth-Sci. Rev., 136,
202–225, https://doi.org/10.1016/j.earscirev.2014.05.016,
2014. a, b, c
Sugden, D. E.: Landscapes of glacial erosion in Greenland and their
relationship to ice, topographic and bedrock conditions, Institute of British
Geographers Special Publication, 7, 177–195, 1974. a
Taylor, J., Siegert, M. J., Payne, A. J., and Hubbard, B.: Regional-scale bed
roughness beneath ice masses: measurement and analysis, Comput.
Geosci., 30, 899–908, https://doi.org/10.1016/j.cageo.2004.06.007,
2004. a, b, c, d
Tinto, K. J., Bell, R. E., Cochran, J. R., and Münchow, A.: Bathymetry in
Petermann fjord from Operation IceBridge aerogravity, Earth
Planet. Sci. Lett., 422, 58–66, https://doi.org/10.1016/j.epsl.2015.04.009,
2015. a, b, c
Ulaby, F. T., Moore, R. K., and Fung, A. K.: Microwave Remote Sensing
Active and Passive-Volume II: Radar Remote Sensing and
Surface Scattering and Enission Theory, Addison Wesley Longman,
Boston, USA, available at: https://infoscience.epfl.ch/record/51982 (last access: November 2019), 1982. a
van den Broeke, M., Box, J., Fettweis, X., Hanna, E., Noël, B., Tedesco,
M., van As, D., van de Berg, W. J., and van Kampenhout, L.: Greenland Ice
Sheet Surface Mass Loss: Recent Developments in Observation and
Modeling, Curr. Clim. Change Rep., 3, 345–356,
https://doi.org/10.1007/s40641-017-0084-8, 2017. a
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016. a
Velicogna, I. and Wahr, J.: Acceleration of Greenland ice mass loss in
spring 2004, Nature, 443, 329–331, https://doi.org/10.1038/nature05168,
2006. a
Weertman, J.: General theory of water flow at the base of a glacier or ice
sheet, Rev. Geophys., 10, 287–333, https://doi.org/10.1029/RG010i001p00287,
1972. a
Young, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D., and Quartini, E.: The distribution of basal water between Antarctic subglacial lakes from radar sounding, Philos. Trans. A, 374, 2059, https://doi.org/10.1098/rsta.2014.0297, 2016. a, b, c, d