Articles | Volume 13, issue 10
The Cryosphere, 13, 2713–2732, 2019
https://doi.org/10.5194/tc-13-2713-2019
The Cryosphere, 13, 2713–2732, 2019
https://doi.org/10.5194/tc-13-2713-2019
Research article
16 Oct 2019
Research article | 16 Oct 2019

Measurement of specific surface area of fresh solid precipitation particles in heavy snowfall regions of Japan

Satoru Yamaguchi et al.

Related authors

NHM–SMAP: spatially and temporally high-resolution nonhydrostatic atmospheric model coupled with detailed snow process model for Greenland Ice Sheet
Masashi Niwano, Teruo Aoki, Akihiro Hashimoto, Sumito Matoba, Satoru Yamaguchi, Tomonori Tanikawa, Koji Fujita, Akane Tsushima, Yoshinori Iizuka, Rigen Shimada, and Masahiro Hori
The Cryosphere, 12, 635–655, https://doi.org/10.5194/tc-12-635-2018,https://doi.org/10.5194/tc-12-635-2018, 2018
Short summary
Liquid water infiltration into a layered snowpack: evaluation of a 3-D water transport model with laboratory experiments
Hiroyuki Hirashima, Francesco Avanzi, and Satoru Yamaguchi
Hydrol. Earth Syst. Sci., 21, 5503–5515, https://doi.org/10.5194/hess-21-5503-2017,https://doi.org/10.5194/hess-21-5503-2017, 2017
Short summary
Anomalous winter-snow-amplified earthquake-induced disaster of the 2015 Langtang avalanche in Nepal
Koji Fujita, Hiroshi Inoue, Takeki Izumi, Satoru Yamaguchi, Ayako Sadakane, Sojiro Sunako, Kouichi Nishimura, Walter W. Immerzeel, Joseph M. Shea, Rijan B. Kayastha, Takanobu Sawagaki, David F. Breashears, Hiroshi Yagi, and Akiko Sakai
Nat. Hazards Earth Syst. Sci., 17, 749–764, https://doi.org/10.5194/nhess-17-749-2017,https://doi.org/10.5194/nhess-17-749-2017, 2017
Short summary
Relationships between snowfall density and solid hydrometeors, based on measured size and fall speed, for snowpack modeling applications
Masaaki Ishizaka, Hiroki Motoyoshi, Satoru Yamaguchi, Sento Nakai, Toru Shiina, and Ken-ichiro Muramoto
The Cryosphere, 10, 2831–2845, https://doi.org/10.5194/tc-10-2831-2016,https://doi.org/10.5194/tc-10-2831-2016, 2016
Short summary
Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments
Francesco Avanzi, Hiroyuki Hirashima, Satoru Yamaguchi, Takafumi Katsushima, and Carlo De Michele
The Cryosphere, 10, 2013–2026, https://doi.org/10.5194/tc-10-2013-2016,https://doi.org/10.5194/tc-10-2013-2016, 2016
Short summary

Related subject area

Discipline: Snow | Subject: Field Studies
Evaluating a prediction system for snow management
Pirmin Philipp Ebner, Franziska Koch, Valentina Premier, Carlo Marin, Florian Hanzer, Carlo Maria Carmagnola, Hugues François, Daniel Günther, Fabiano Monti, Olivier Hargoaa, Ulrich Strasser, Samuel Morin, and Michael Lehning
The Cryosphere, 15, 3949–3973, https://doi.org/10.5194/tc-15-3949-2021,https://doi.org/10.5194/tc-15-3949-2021, 2021
Short summary
Implications of surface flooding on airborne estimates of snow depth on sea ice
Anja Rösel, Sinead Louise Farrell, Vishnu Nandan, Jaqueline Richter-Menge, Gunnar Spreen, Dmitry V. Divine, Adam Steer, Jean-Charles Gallet, and Sebastian Gerland
The Cryosphere, 15, 2819–2833, https://doi.org/10.5194/tc-15-2819-2021,https://doi.org/10.5194/tc-15-2819-2021, 2021
Short summary
A low-cost method for monitoring snow characteristics at remote field sites
Rosamond J. Tutton and Robert G. Way
The Cryosphere, 15, 1–15, https://doi.org/10.5194/tc-15-1-2021,https://doi.org/10.5194/tc-15-1-2021, 2021
Short summary
The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack
Neige Calonne, Bettina Richter, Henning Löwe, Cecilia Cetti, Judith ter Schure, Alec Van Herwijnen, Charles Fierz, Matthias Jaggi, and Martin Schneebeli
The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020,https://doi.org/10.5194/tc-14-1829-2020, 2020
Short summary
The evolution of snow bedforms in the Colorado Front Range and the processes that shape them
Kelly Kochanski, Robert S. Anderson, and Gregory E. Tucker
The Cryosphere, 13, 1267–1281, https://doi.org/10.5194/tc-13-1267-2019,https://doi.org/10.5194/tc-13-1267-2019, 2019
Short summary

Cited articles

Akitaya, E. and Nakamura, K.: Formation of weak layers caused by snow crystals fallen in worm front, Snow and Ice in Hokkaido (a bulletin of the Hokkaido branch, Japanese Society of Snow and Ice), 32, 10–13, 2013 (in Japanese). 
Akitaya, E. and Shimuzu, H.: Observations of weak layers in a snow cover. Low Temperature Science, Ser. A, Physical sciences, 46, 67–75, http://hdl.handle.net/2115/18548 (last access: 20 April 2019), 1988 (in Japanese with English abstract). 
Aoki, T., Kuchiki, K., Niwano, M., Kodama, Y., Hosaka, M., and Tanaka, T.: Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models, J. Geophys. Res., 116, D11114, https://doi.org/10.1029/2010JD015507, 2011. 
Arakawa, H., Izumi, K., Kawashima, K., and Kawamura, T: Study on quantitative classification of seasonal snow using specific surface area and intrinsic permeability, Cold. Reg. Sci. Technol., 59, 163–168, https://doi.org/10.1016/j.coldregions.2009.07.004, 2009. 
Araki, K.: Snowfall characteristics of heavy snowfall events associated with cyclones causing surface avalanche in Nasu, Japan, Seppyo, 80, 131–147, 2018 (in Japanese with English abstract). 
Download
Short summary
The specific surface area (SSA) of solid precipitation particles (PPs) includes detailed information of PP. This work is based on field measurement of SSA of PPs in Nagaoka, the city with the heaviest snowfall in Japan. The values of SSA strongly depend on wind speed (WS) and wet-bulb temperature (Tw) on the ground. An equation to empirically estimate the SSA of fresh PPs with WS and Tw was established and the equation successfully reproduced the fluctuation of SSA in Nagaoka.