Articles | Volume 13, issue 1
The Cryosphere, 13, 237–245, 2019
https://doi.org/10.5194/tc-13-237-2019
The Cryosphere, 13, 237–245, 2019
https://doi.org/10.5194/tc-13-237-2019
Brief communication
25 Jan 2019
Brief communication | 25 Jan 2019

Brief communication: Rapid machine-learning-based extraction and measurement of ice wedge polygons in high-resolution digital elevation models

Charles J. Abolt et al.

Related authors

New insights into the drainage of inundated ice-wedge polygons using fundamental hydrologic principles
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021,https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
New insights into the drainage of inundated Arctic polygonal tundra using fundamental hydrologic principles
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, and Cathy J. Wilson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-100,https://doi.org/10.5194/tc-2020-100, 2020
Manuscript not accepted for further review
Short summary
Microtopographic control on the ground thermal regime in ice wedge polygons
Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Dylan R. Harp
The Cryosphere, 12, 1957–1968, https://doi.org/10.5194/tc-12-1957-2018,https://doi.org/10.5194/tc-12-1957-2018, 2018
Short summary

Related subject area

Discipline: Frozen ground | Subject: Remote Sensing
Incorporating kinematic attributes into rock glacier inventories exploiting InSAR data: preliminary results in eleven regions worldwide
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne Hvidtfeldt Christiansen, Margaret Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne Staalesen Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-342,https://doi.org/10.5194/tc-2021-342, 2022
Revised manuscript accepted for TC
Short summary
Assessing volumetric change distributions and scaling relations of retrogressive thaw slumps across the Arctic
Philipp Bernhard, Simon Zwieback, Nora Bergner, and Irena Hajnsek
The Cryosphere, 16, 1–15, https://doi.org/10.5194/tc-16-1-2022,https://doi.org/10.5194/tc-16-1-2022, 2022
Short summary
Contribution of ground ice melting to the expansion of Serling Co lake on the Tibetan Plateau
Lingxiao Wang, Lin Zhao, Huayun Zhou, Shibo Liu, Erji Du, Defu Zou, Guangyue Liu, Yao Xiao, Guojie Hu, Chong Wang, Zhe Sun, Zhibin Li, Yongping Qiao, Tonghua Wu, Chengye Li, and Xubing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-335,https://doi.org/10.5194/tc-2021-335, 2021
Revised manuscript accepted for TC
Short summary
Top-of-permafrost ground ice indicated by remotely sensed late-season subsidence
Simon Zwieback and Franz J. Meyer
The Cryosphere, 15, 2041–2055, https://doi.org/10.5194/tc-15-2041-2021,https://doi.org/10.5194/tc-15-2041-2021, 2021
Short summary
Inventory and changes of rock glacier creep speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021,https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary

Cited articles

Abolt, C. J., Young, M. H., Atchley, A. L., and Brown, C. J.: CNN-watershed: A machine-learning based tool for delineation and measurement of ice wedge polygons in high-resolution digital elevation models, Zenodo repository, https://doi.org/10.5821/zenodo.2537167, 2018. 
Ciresan, D., Giusti, A., Gambardella, L. M. and Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images, in: Advances in Neural Information Processing Systems 25, edited by: Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, Q., Curran Associates, Inc., 2843–2851, 2012. 
He, K., Gkioxari, G., Dollar, P., and Girshick, R.: Mask R-CNN, in: Proceedings of the 2017 IEEE International Conference on Computer Vision, IEEE, Piscataway, NJ, USA, 2017. 
Jorgenson, M. T., Shur, Y. L., and Pullman, E. R.: Abrupt increase in permafrost degradation in Arctic Alaska, Geophys. Res. Lett., 33, L02503, https://doi.org/10.1029/2005GL024960, 2006. 
Jorgenson, M. T., Kanevskiy, M., Shur, Y., Moskalenko, N., Brown, D. R. N., Wickland, K., Striegl, R. and Koch, J.: Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization, J. Geophys. Res.-Earth Surf., 120, 2280–2297, https://doi.org/10.1002/2015JF003602, 2015. 
Download
Short summary
We present a workflow that uses a machine-learning algorithm known as a convolutional neural network (CNN) to rapidly delineate ice wedge polygons in high-resolution topographic datasets. Our workflow permits thorough assessments of polygonal microtopography at the kilometer scale or greater, which can improve understanding of landscape hydrology and carbon budgets. We demonstrate that a single CNN can be trained to delineate polygons with high accuracy in diverse tundra settings.