Articles | Volume 13, issue 1
https://doi.org/10.5194/tc-13-237-2019
https://doi.org/10.5194/tc-13-237-2019
Brief communication
 | 
25 Jan 2019
Brief communication |  | 25 Jan 2019

Brief communication: Rapid machine-learning-based extraction and measurement of ice wedge polygons in high-resolution digital elevation models

Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Cathy J. Wilson

Related authors

Temporal persistence of postfire flood hazards under present and future climate conditions in southern Arizona, USA
Tao Liu, Luke A. McGuire, Ann M. Youberg, Charles J. Abolt, and Adam L. Atchley
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-151,https://doi.org/10.5194/nhess-2024-151, 2024
Preprint under review for NHESS
Short summary
Brief Communication: Effects of different saturation vapor pressure calculations on simulated surface-subsurface hydrothermal regimes at a permafrost field site
Xiang Huang, Charles J. Abolt, and Katrina E. Bennett
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-8,https://doi.org/10.5194/tc-2023-8, 2023
Manuscript not accepted for further review
Short summary
New insights into the drainage of inundated ice-wedge polygons using fundamental hydrologic principles
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Bob Busey, Sofia T. Avendaño, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, Cathy J. Wilson, and Katrina E. Bennett
The Cryosphere, 15, 4005–4029, https://doi.org/10.5194/tc-15-4005-2021,https://doi.org/10.5194/tc-15-4005-2021, 2021
Short summary
New insights into the drainage of inundated Arctic polygonal tundra using fundamental hydrologic principles
Dylan R. Harp, Vitaly Zlotnik, Charles J. Abolt, Brent D. Newman, Adam L. Atchley, Elchin Jafarov, and Cathy J. Wilson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-100,https://doi.org/10.5194/tc-2020-100, 2020
Manuscript not accepted for further review
Short summary
Microtopographic control on the ground thermal regime in ice wedge polygons
Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Dylan R. Harp
The Cryosphere, 12, 1957–1968, https://doi.org/10.5194/tc-12-1957-2018,https://doi.org/10.5194/tc-12-1957-2018, 2018
Short summary

Related subject area

Discipline: Frozen ground | Subject: Remote Sensing
Toward long-term monitoring of regional permafrost thaw with satellite interferometric synthetic aperture radar
Taha Sadeghi Chorsi, Franz J. Meyer, and Timothy H. Dixon
The Cryosphere, 18, 3723–3740, https://doi.org/10.5194/tc-18-3723-2024,https://doi.org/10.5194/tc-18-3723-2024, 2024
Short summary
Landcover succession for recently drained lakes in permafrost on the Yamal peninsula, Western Siberia
Clemens von Baeckmann, Annett Bartsch, Helena Bergstedt, Aleksandra Efimova, Barbara Widhalm, Dorothee Ehrich, Timo Kumpula, Alexander Sokolov, and Svetlana Abdulmanova
EGUsphere, https://doi.org/10.5194/egusphere-2024-699,https://doi.org/10.5194/egusphere-2024-699, 2024
Short summary
Allometric scaling of retrogressive thaw slumps
Jurjen van der Sluijs, Steven V. Kokelj, and Jon F. Tunnicliffe
The Cryosphere, 17, 4511–4533, https://doi.org/10.5194/tc-17-4511-2023,https://doi.org/10.5194/tc-17-4511-2023, 2023
Short summary
Brief communication: Identification of tundra topsoil frozen/thawed state from SMAP and GCOM-W1 radiometer measurements using the spectral gradient method
Konstantin Muzalevskiy, Zdenek Ruzicka, Alexandre Roy, Michael Loranty, and Alexander Vasiliev
The Cryosphere, 17, 4155–4164, https://doi.org/10.5194/tc-17-4155-2023,https://doi.org/10.5194/tc-17-4155-2023, 2023
Short summary
Bedfast and floating-ice dynamics of thermokarst lakes using a temporal deep-learning mapping approach: case study of the Old Crow Flats, Yukon, Canada
Maria Shaposhnikova, Claude Duguay, and Pascale Roy-Léveillée
The Cryosphere, 17, 1697–1721, https://doi.org/10.5194/tc-17-1697-2023,https://doi.org/10.5194/tc-17-1697-2023, 2023
Short summary

Cited articles

Abolt, C. J., Young, M. H., Atchley, A. L., and Brown, C. J.: CNN-watershed: A machine-learning based tool for delineation and measurement of ice wedge polygons in high-resolution digital elevation models, Zenodo repository, https://doi.org/10.5821/zenodo.2537167, 2018. 
Ciresan, D., Giusti, A., Gambardella, L. M. and Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images, in: Advances in Neural Information Processing Systems 25, edited by: Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, Q., Curran Associates, Inc., 2843–2851, 2012. 
He, K., Gkioxari, G., Dollar, P., and Girshick, R.: Mask R-CNN, in: Proceedings of the 2017 IEEE International Conference on Computer Vision, IEEE, Piscataway, NJ, USA, 2017. 
Jorgenson, M. T., Shur, Y. L., and Pullman, E. R.: Abrupt increase in permafrost degradation in Arctic Alaska, Geophys. Res. Lett., 33, L02503, https://doi.org/10.1029/2005GL024960, 2006. 
Jorgenson, M. T., Kanevskiy, M., Shur, Y., Moskalenko, N., Brown, D. R. N., Wickland, K., Striegl, R. and Koch, J.: Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization, J. Geophys. Res.-Earth Surf., 120, 2280–2297, https://doi.org/10.1002/2015JF003602, 2015. 
Download
Short summary
We present a workflow that uses a machine-learning algorithm known as a convolutional neural network (CNN) to rapidly delineate ice wedge polygons in high-resolution topographic datasets. Our workflow permits thorough assessments of polygonal microtopography at the kilometer scale or greater, which can improve understanding of landscape hydrology and carbon budgets. We demonstrate that a single CNN can be trained to delineate polygons with high accuracy in diverse tundra settings.