Articles | Volume 13, issue 5
https://doi.org/10.5194/tc-13-1513-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-1513-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rapid retreat of permafrost coastline observed with aerial drone photogrammetry
Andrew M. Cunliffe
CORRESPONDING AUTHOR
Geography, University of Exeter, Exeter, EX4 4RJ, UK
School of GeoSciences, University of Edinburgh, Edinburgh, UK
George Tanski
Faculty of Sciences, Earth and Climate, Vrije Universiteit Amsterdam,
Amsterdam, the Netherlands
Department of Permafrost Research, Alfred Wegener Institute,
Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Boris Radosavljevic
GFZ German Research Centre for Geosciences, Potsdam, Germany
William F. Palmer
Landscapes, Paris, France
Torsten Sachs
GFZ German Research Centre for Geosciences, Potsdam, Germany
Hugues Lantuit
Department of Permafrost Research, Alfred Wegener Institute,
Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Jeffrey T. Kerby
Neukom Institute for Computational Science, Dartmouth College,
Hanover, NH, USA
Isla H. Myers-Smith
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Related authors
Antony Philip Emenyu, Thomas Pienkowski, Andrew M. Cunliffe, Timothy M. Lenton, and Tom Powell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2531, https://doi.org/10.5194/egusphere-2023-2531, 2023
Short summary
Short summary
This paper explores what processes could boost adoption rates for regenerative agriculture programs in Africa and draws on insights from successful rapid scaling of TIST in east Africa. Found that the cultivation of reinforcing feedback processes that strengthened the social capital around adoption and elimination of barriers to carbon accreditation for RA projects to be key success factors and possible opportunities new and ongoing RA programs to boost their adoption rates.
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024, https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Short summary
To improve the accuracy of spatial carbon exchange estimates, we evaluated simple linear models for net ecosystem exchange (NEE) and gross primary productivity (GPP) and how they can be used to upscale the CO2 exchange of agricultural fields. The models are solely driven by Sentinel-2-derived vegetation indices (VIs). Evaluations show that different VIs have variable power to estimate NEE and GPP of crops in different years. The overall performance is as good as results from complex crop models.
Inge Wiekenkamp, Anna Katharina Lehmann, Alexander Bütow, Jörg Hartmann, Stefan Metzger, Thomas Ruhtz, Christian Wille, Mathias Zöllner, and Torsten Sachs
EGUsphere, https://doi.org/10.5194/egusphere-2024-1586, https://doi.org/10.5194/egusphere-2024-1586, 2024
Short summary
Short summary
Airborne eddy covariance platforms are crucial, as they measure the three-dimension wind, and turbulent transport of matter and energy between the surface and the atmosphere at larger scales. In this study we introduce the new ASK-16 eddy covariance platform that is able to accurately measure turbulent fluxes and wind vectors. Data from this platform can help to build bridges between local tower measurements and regional remote sensing fluxes or inversion products.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Luke D. Schiferl, Clayton Elder, Olli Peltola, Annett Bartsch, Amanda Armstrong, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-84, https://doi.org/10.5194/essd-2024-84, 2024
Preprint under review for ESSD
Short summary
Short summary
We present daily methane fluxes of northern wetlands at 10-km resolution during 2016–2022 (WetCH4) derived from a novel machine-learning framework with improved accuracy. We estimated an average annual CH4 emissions of 20.8 ±2.1 Tg CH4 yr-1. Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variations coming from West Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billdesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Gharun Mana, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
EGUsphere, https://doi.org/10.5194/egusphere-2024-165, https://doi.org/10.5194/egusphere-2024-165, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the earth surface to the atmosphere, or flux, is an important process to understand that impacts all of our lives. Here we outline a method to estimate global water and CO2 fluxes based on direct measurements from site around the world called FLUXCOM-X. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Nina Nesterova, Marina Leibman, Alexander Kizyakov, Hugues Lantuit, Ilya Tarasevich, Ingmar Nitze, Alexandra Veremeeva, and Guido Grosse
EGUsphere, https://doi.org/10.5194/egusphere-2023-2914, https://doi.org/10.5194/egusphere-2023-2914, 2024
Short summary
Short summary
Retrogressive thaw slumps (RTSs) are widespread in the Arctic permafrost landforms. RTSs present a big interest for researchers because of their expansion due to climate change. There are currently different scientific schools and terminology used in the literature on this topic. We have critically reviewed existing concepts and terminology and provided clarifications to present a useful base for experts in the field and ease the introduction to the topic for scientists who are new to it.
Daniel Wesley, Scott Dallimore, Roger MacLeod, Torsten Sachs, and David Risk
The Cryosphere, 17, 5283–5297, https://doi.org/10.5194/tc-17-5283-2023, https://doi.org/10.5194/tc-17-5283-2023, 2023
Short summary
Short summary
The Mackenzie River delta (MRD) is an ecosystem with high rates of methane production from biologic and geologic sources, but little research has been done to determine how often geologic or biogenic methane is emitted to the atmosphere. Stable carbon isotope analysis was used to identify the source of CH4 at several sites. Stable carbon isotope (δ13C-CH4) signatures ranged from −42 to −88 ‰ δ13C-CH4, indicating that CH4 emission in the MRD is caused by biologic and geologic sources.
Antony Philip Emenyu, Thomas Pienkowski, Andrew M. Cunliffe, Timothy M. Lenton, and Tom Powell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2531, https://doi.org/10.5194/egusphere-2023-2531, 2023
Short summary
Short summary
This paper explores what processes could boost adoption rates for regenerative agriculture programs in Africa and draws on insights from successful rapid scaling of TIST in east Africa. Found that the cultivation of reinforcing feedback processes that strengthened the social capital around adoption and elimination of barriers to carbon accreditation for RA projects to be key success factors and possible opportunities new and ongoing RA programs to boost their adoption rates.
Tabea Rettelbach, Ingmar Nitze, Inge Grünberg, Jennika Hammar, Simon Schäffler, Daniel Hein, Matthias Gessner, Tilman Bucher, Jörg Brauchle, Jörg Hartmann, Torsten Sachs, Julia Boike, and Guido Grosse
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-193, https://doi.org/10.5194/essd-2023-193, 2023
Preprint under review for ESSD
Short summary
Short summary
Permafrost landscapes in the Arctic are rapidly changing due to climate warming. We here publish aerial images and elevation models with very high spatial detail that help study these landscapes in northwestern Canada and Alaska. The images were collected using the Modular Aerial Camera System (MACS). This dataset has significant implications for understanding permafrost landscape dynamics in response to climate change. It is publicly available for further research.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Niek Jesse Speetjens, Gustaf Hugelius, Thomas Gumbricht, Hugues Lantuit, Wouter R. Berghuijs, Philip A. Pika, Amanda Poste, and Jorien E. Vonk
Earth Syst. Sci. Data, 15, 541–554, https://doi.org/10.5194/essd-15-541-2023, https://doi.org/10.5194/essd-15-541-2023, 2023
Short summary
Short summary
The Arctic is rapidly changing. Outside the Arctic, large databases changed how researchers look at river systems and land-to-ocean processes. We present the first integrated pan-ARctic CAtchments summary DatabasE (ARCADE) (> 40 000 river catchments draining into the Arctic Ocean). It incorporates information about the drainage area with 103 geospatial, environmental, climatic, and physiographic properties and covers small watersheds , which are especially subject to change, at a high resolution
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022, https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021, https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Short summary
The high-latitude landscape or Arctic–boreal zone has been warming rapidly, impacting the carbon balance both regionally and globally. Given the possible global effects of climate change, it is important to have accurate climate model simulations. We assess the simulation of the Arctic–boreal carbon cycle in the Community Land Model (CLM 5.0). We find biases in both the timing and magnitude photosynthesis. We then use observational data to improve the simulation of the carbon cycle.
Rebecca Rolph, Pier Paul Overduin, Thomas Ravens, Hugues Lantuit, and Moritz Langer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-28, https://doi.org/10.5194/gmd-2021-28, 2021
Revised manuscript not accepted
Short summary
Short summary
Declining sea ice, larger waves, and increasing air temperatures are contributing to a rapidly eroding Arctic coastline. We simulate water levels using wind speed and direction, which are used with wave height, wave period, and sea surface temperature to drive an erosion model of a partially frozen cliff and beach. This provides a first step to include Arctic erosion in larger-scale earth system models. Simulated cumulative retreat rates agree within the same order of magnitude as observations.
Felix Nieberding, Christian Wille, Gerardo Fratini, Magnus O. Asmussen, Yuyang Wang, Yaoming Ma, and Torsten Sachs
Earth Syst. Sci. Data, 12, 2705–2724, https://doi.org/10.5194/essd-12-2705-2020, https://doi.org/10.5194/essd-12-2705-2020, 2020
Short summary
Short summary
We present the first long-term eddy covariance CO2 and H2O flux measurements from the large but underrepresented alpine steppe ecosystem on the central Tibetan Plateau. We applied careful corrections and rigorous quality filtering and analyzed the turbulent flow regime to provide meaningful fluxes. This comprehensive data set allows potential users to put the gas flux dynamics into context with ecosystem properties and potential flux drivers and allows for comparisons with other data sets.
Tuukka Petäjä, Ella-Maria Duplissy, Ksenia Tabakova, Julia Schmale, Barbara Altstädter, Gerard Ancellet, Mikhail Arshinov, Yurii Balin, Urs Baltensperger, Jens Bange, Alison Beamish, Boris Belan, Antoine Berchet, Rossana Bossi, Warren R. L. Cairns, Ralf Ebinghaus, Imad El Haddad, Beatriz Ferreira-Araujo, Anna Franck, Lin Huang, Antti Hyvärinen, Angelika Humbert, Athina-Cerise Kalogridis, Pavel Konstantinov, Astrid Lampert, Matthew MacLeod, Olivier Magand, Alexander Mahura, Louis Marelle, Vladimir Masloboev, Dmitri Moisseev, Vaios Moschos, Niklas Neckel, Tatsuo Onishi, Stefan Osterwalder, Aino Ovaska, Pauli Paasonen, Mikhail Panchenko, Fidel Pankratov, Jakob B. Pernov, Andreas Platis, Olga Popovicheva, Jean-Christophe Raut, Aurélie Riandet, Torsten Sachs, Rosamaria Salvatori, Roberto Salzano, Ludwig Schröder, Martin Schön, Vladimir Shevchenko, Henrik Skov, Jeroen E. Sonke, Andrea Spolaor, Vasileios K. Stathopoulos, Mikko Strahlendorff, Jennie L. Thomas, Vito Vitale, Sterios Vratolis, Carlo Barbante, Sabine Chabrillat, Aurélien Dommergue, Konstantinos Eleftheriadis, Jyri Heilimo, Kathy S. Law, Andreas Massling, Steffen M. Noe, Jean-Daniel Paris, André S. H. Prévôt, Ilona Riipinen, Birgit Wehner, Zhiyong Xie, and Hanna K. Lappalainen
Atmos. Chem. Phys., 20, 8551–8592, https://doi.org/10.5194/acp-20-8551-2020, https://doi.org/10.5194/acp-20-8551-2020, 2020
Short summary
Short summary
The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. Here we summarize initial results from our integrative project exploring the Arctic environment and pollution to deliver data products, metrics, and indicators for stakeholders.
Caroline Coch, Bennet Juhls, Scott F. Lamoureux, Melissa J. Lafrenière, Michael Fritz, Birgit Heim, and Hugues Lantuit
Biogeosciences, 16, 4535–4553, https://doi.org/10.5194/bg-16-4535-2019, https://doi.org/10.5194/bg-16-4535-2019, 2019
Short summary
Short summary
Climate change affects Arctic ecosystems. This includes thawing of permafrost (ground below 0 °C) and an increase in rainfall. Both have substantial impacts on the chemical composition of river water. We compared the composition of small rivers in the low and high Arctic with the large Arctic rivers. In comparison, dissolved organic matter in the small rivers is more susceptible to degradation; thus, it could potentially increase carbon dioxide emissions. Rainfall events have a similar effect.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Franziska Koebsch, Matthias Winkel, Susanne Liebner, Bo Liu, Julia Westphal, Iris Schmiedinger, Alejandro Spitzy, Matthias Gehre, Gerald Jurasinski, Stefan Köhler, Viktoria Unger, Marian Koch, Torsten Sachs, and Michael E. Böttcher
Biogeosciences, 16, 1937–1953, https://doi.org/10.5194/bg-16-1937-2019, https://doi.org/10.5194/bg-16-1937-2019, 2019
Short summary
Short summary
In natural coastal wetlands, high supplies of marine sulfate suppress methane production. We found these natural methane suppression mechanisms to be suspended by humane interference in a brackish wetland. Here, diking and freshwater rewetting had caused an efficient depletion of the sulfate reservoir and opened up favorable conditions for an intensive methane production. Our results demonstrate how human disturbance can turn coastal wetlands into distinct sources of the greenhouse gas methane.
David Holl, Christian Wille, Torsten Sachs, Peter Schreiber, Benjamin R. K. Runkle, Lutz Beckebanze, Moritz Langer, Julia Boike, Eva-Maria Pfeiffer, Irina Fedorova, Dimitry Y. Bolshianov, Mikhail N. Grigoriev, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 221–240, https://doi.org/10.5194/essd-11-221-2019, https://doi.org/10.5194/essd-11-221-2019, 2019
Short summary
Short summary
We present a multi-annual time series of land–atmosphere carbon dioxide fluxes measured in situ with the eddy covariance technique in the Siberian Arctic. In arctic permafrost regions, climate–carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have been made in recent years. Up to now, the available database of in situ measurements from the Arctic was biased towards Alaska and records from the Eurasian Arctic were scarce.
Xi Wen, Viktoria Unger, Gerald Jurasinski, Franziska Koebsch, Fabian Horn, Gregor Rehder, Torsten Sachs, Dominik Zak, Gunnar Lischeid, Klaus-Holger Knorr, Michael E. Böttcher, Matthias Winkel, Paul L. E. Bodelier, and Susanne Liebner
Biogeosciences, 15, 6519–6536, https://doi.org/10.5194/bg-15-6519-2018, https://doi.org/10.5194/bg-15-6519-2018, 2018
Short summary
Short summary
Rewetting drained peatlands may lead to prolonged emission of the greenhouse gas methane, but the underlying factors are not well described. In this study, we found two rewetted fens with known high methane fluxes had a high ratio of microbial methane producers to methane consumers and a low abundance of methane consumers compared to pristine wetlands. We therefore suggest abundances of methane-cycling microbes as potential indicators for prolonged high methane emissions in rewetted peatlands.
Sophia Walther, Luis Guanter, Birgit Heim, Martin Jung, Gregory Duveiller, Aleksandra Wolanin, and Torsten Sachs
Biogeosciences, 15, 6221–6256, https://doi.org/10.5194/bg-15-6221-2018, https://doi.org/10.5194/bg-15-6221-2018, 2018
Short summary
Short summary
We explored the timing of the peak of the short annual growing season in tundra ecosystems as indicated by an extensive suite of satellite indicators of vegetation productivity. Delayed peak greenness compared to peak photosynthesis is consistently found across years and land-cover classes. Plants also experience growth after optimal conditions for assimilation regarding light and temperature have passed. Our results have implications for the modelling of the circumpolar carbon balance.
Michael M. Loranty, Benjamin W. Abbott, Daan Blok, Thomas A. Douglas, Howard E. Epstein, Bruce C. Forbes, Benjamin M. Jones, Alexander L. Kholodov, Heather Kropp, Avni Malhotra, Steven D. Mamet, Isla H. Myers-Smith, Susan M. Natali, Jonathan A. O'Donnell, Gareth K. Phoenix, Adrian V. Rocha, Oliver Sonnentag, Ken D. Tape, and Donald A. Walker
Biogeosciences, 15, 5287–5313, https://doi.org/10.5194/bg-15-5287-2018, https://doi.org/10.5194/bg-15-5287-2018, 2018
Short summary
Short summary
Vegetation and soils strongly influence ground temperature in permafrost ecosystems across the Arctic and sub-Arctic. These effects will cause differences rates of permafrost thaw related to the distribution of tundra and boreal forests. As the distribution of forests and tundra change, the effects of climate change on permafrost will also change. We review the ecosystem processes that will influence permafrost thaw and outline how they will feed back to climate warming.
Jörg Hartmann, Martin Gehrmann, Katrin Kohnert, Stefan Metzger, and Torsten Sachs
Atmos. Meas. Tech., 11, 4567–4581, https://doi.org/10.5194/amt-11-4567-2018, https://doi.org/10.5194/amt-11-4567-2018, 2018
Short summary
Short summary
We present new in-flight calibration procedures for airborne turbulence measurements that exploit suitable regular flight legs without the need for dedicated calibration patterns. Furthermore we estimate the accuracy of the airborne wind measurement and of the turbulent fluxes of the traces gases methane and carbon dioxide.
Andrei Serafimovich, Stefan Metzger, Jörg Hartmann, Katrin Kohnert, Donatella Zona, and Torsten Sachs
Atmos. Chem. Phys., 18, 10007–10023, https://doi.org/10.5194/acp-18-10007-2018, https://doi.org/10.5194/acp-18-10007-2018, 2018
Short summary
Short summary
In order to support the evaluation of coupled atmospheric–land-surface models we investigated spatial patterns of energy fluxes in relation to land-surface properties and upscaled airborne flux measurements to high resolution flux maps. A machine learning technique allows us to estimate environmental response functions between spatially and temporally resolved flux observations and corresponding biophysical and meteorological drivers.
Astrid Lampert, Jörg Hartmann, Falk Pätzold, Lennart Lobitz, Peter Hecker, Katrin Kohnert, Eric Larmanou, Andrei Serafimovich, and Torsten Sachs
Atmos. Meas. Tech., 11, 2523–2536, https://doi.org/10.5194/amt-11-2523-2018, https://doi.org/10.5194/amt-11-2523-2018, 2018
Short summary
Short summary
We compared two different fast-response humidity sensors simultaneously on different airborne platforms. One is a particular, well-establed Lyman-alpha hygrometer that has been used for decades as the standard for fast airborne humidity measurements. However, it is not available any more. The other one is a hygrometer based on the absorption of infrared radiation, from LI-COR. For an environment of low vibrations, the LI-COR sensor is suitable for fast airborne water vapour measurements.
Justine L. Ramage, Anna M. Irrgang, Anne Morgenstern, and Hugues Lantuit
Biogeosciences, 15, 1483–1495, https://doi.org/10.5194/bg-15-1483-2018, https://doi.org/10.5194/bg-15-1483-2018, 2018
Short summary
Short summary
We describe the evolution of thaw slumps between 1952 and 2011 along the Yukon Coast, Canada, and calculate the contribution of the slumps to the carbon budget in this area. The number of slumps has increased by 73 % over the period. These slumps displaced more than 16 billion m3 of material and mobilized 146 t of carbon. This represents 0.6 % of the annual carbon flux released from shoreline retreat, which shows that the contribution of slumps to the nearshore carbon budget is non-negligible.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Gerhard Krinner, Shushi Peng, Mika Aurela, Christian Bernhofer, Christian Brümmer, Syndonia Bret-Harte, Housen Chu, Jiquan Chen, Ankur R. Desai, Jiří Dušek, Eugénie S. Euskirchen, Krzysztof Fortuniak, Lawrence B. Flanagan, Thomas Friborg, Mateusz Grygoruk, Sébastien Gogo, Thomas Grünwald, Birger U. Hansen, David Holl, Elyn Humphreys, Miriam Hurkuck, Gerard Kiely, Janina Klatt, Lars Kutzbach, Chloé Largeron, Fatima Laggoun-Défarge, Magnus Lund, Peter M. Lafleur, Xuefei Li, Ivan Mammarella, Lutz Merbold, Mats B. Nilsson, Janusz Olejnik, Mikaell Ottosson-Löfvenius, Walter Oechel, Frans-Jan W. Parmentier, Matthias Peichl, Norbert Pirk, Olli Peltola, Włodzimierz Pawlak, Daniel Rasse, Janne Rinne, Gaius Shaver, Hans Peter Schmid, Matteo Sottocornola, Rainer Steinbrecher, Torsten Sachs, Marek Urbaniak, Donatella Zona, and Klaudia Ziemblinska
Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, https://doi.org/10.5194/gmd-11-497-2018, 2018
Short summary
Short summary
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We implemented peatland hydrological and carbon accumulation processes into the ORCHIDEE land surface model. The model was evaluated against EC measurements from 30 northern peatland sites. The model generally well reproduced the spatial gradient and temporal variations in GPP and NEE at these sites. Water table depth was not well predicted but had only small influence on simulated NEE.
Stefan Metzger, David Durden, Cove Sturtevant, Hongyan Luo, Natchaya Pingintha-Durden, Torsten Sachs, Andrei Serafimovich, Jörg Hartmann, Jiahong Li, Ke Xu, and Ankur R. Desai
Geosci. Model Dev., 10, 3189–3206, https://doi.org/10.5194/gmd-10-3189-2017, https://doi.org/10.5194/gmd-10-3189-2017, 2017
Short summary
Short summary
We apply the
development and systems operationssoftware development model to create the eddy4R–Docker open-source, flexible, and modular eddy-covariance data processing environment. Test applications to aircraft and tower data, as well as a software cross validation demonstrate its efficiency and consistency. Key improvements in accessibility, extensibility, and reproducibility build the foundation for deploying complex scientific algorithms in an effective and scalable manner.
Sonja Kaiser, Mathias Göckede, Karel Castro-Morales, Christian Knoblauch, Altug Ekici, Thomas Kleinen, Sebastian Zubrzycki, Torsten Sachs, Christian Wille, and Christian Beer
Geosci. Model Dev., 10, 333–358, https://doi.org/10.5194/gmd-10-333-2017, https://doi.org/10.5194/gmd-10-333-2017, 2017
Short summary
Short summary
A new consistent, process-based methane module that is integrated with permafrost processes is presented. It was developed within a global land surface scheme and evaluated at a polygonal tundra site in Samoylov, Russia. The calculated methane emissions show fair agreement with field data and capture detailed differences between the explicitly modelled gas transport processes and in the gas dynamics under varying soil water and temperature conditions during seasons and on different microsites.
Mathias Hoffmann, Maximilian Schulz-Hanke, Juana Garcia Alba, Nicole Jurisch, Ulrike Hagemann, Torsten Sachs, Michael Sommer, and Jürgen Augustin
Atmos. Meas. Tech., 10, 109–118, https://doi.org/10.5194/amt-10-109-2017, https://doi.org/10.5194/amt-10-109-2017, 2017
Short summary
Short summary
Processes driving production and transport of CH4 in wetlands are complex. We present an algorithm to separate open-water automatic chamber CH4 fluxes into diffusion and ebullition. This helps to reveal dynamics, identify drivers and obtain reliable CH4 emissions. The algorithm is based on sudden concentration changes during single measurements. A variable filter is applied using a multiple of the interquartile range. The algorithm was verified for data of a rewetted former fen grassland site.
Daniela Franz, Franziska Koebsch, Eric Larmanou, Jürgen Augustin, and Torsten Sachs
Biogeosciences, 13, 3051–3070, https://doi.org/10.5194/bg-13-3051-2016, https://doi.org/10.5194/bg-13-3051-2016, 2016
Short summary
Short summary
Based on the eddy covariance method we investigate the ecosystem–atmosphere exchange of CH4 and CO2 at a eutrophic shallow lake as a challenging ecosystem often evolving during peatland rewetting. Both open water and emergent vegetation are net emitters of CH4 and CO2, but with strikingly different release rates. Even after 9 years of rewetting the lake ecosystem exhibits a considerable carbon loss and global warming impact, the latter mainly driven by high CH4 emissions from the open waterbody.
B. K. Biskaborn, J.-P. Lanckman, H. Lantuit, K. Elger, D. A. Streletskiy, W. L. Cable, and V. E. Romanovsky
Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015, https://doi.org/10.5194/essd-7-245-2015, 2015
Short summary
Short summary
This paper introduces the new database of the Global Terrestrial Network for Permafrost (GTN-P) on permafrost temperature and active layer thickness data. It describes the operability of the Data Management System and the data quality. By applying statistics on GTN-P metadata, we analyze the spatial sample representation of permafrost monitoring sites. Comparison with environmental variables and climate projection data enable identification of potential future research locations.
M. Hoffmann, M. Schulz-Hanke, J. Garcia Alba, N. Jurisch, U. Hagemann, T. Sachs, M. Sommer, and J. Augustin
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-12923-2015, https://doi.org/10.5194/bgd-12-12923-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
Processes driving the production, transformation and transport of CH4 in wetlands are highly complex. Thus, serious challenges are constitutes in terms of process understanding, potential drivers and the calculation of reliable CH4 emission estimates. We present a simple calculation algorithm to separate CH4 fluxes measured with closed chambers into diffusion- and ebullition-derived components, which helps facilitating the identification of underlying dynamics and potential drivers.
M. Fritz, T. Opel, G. Tanski, U. Herzschuh, H. Meyer, A. Eulenburg, and H. Lantuit
The Cryosphere, 9, 737–752, https://doi.org/10.5194/tc-9-737-2015, https://doi.org/10.5194/tc-9-737-2015, 2015
Short summary
Short summary
Ground ice in permafrost has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements that are important for ecosystems and carbon cycling.
Ice wedges in the Arctic Yedoma region hold 45.2 Tg DOC (Tg = 10^12g), 33.6 Tg DIC and a freshwater reservoir of 4200 km³.
Leaching of terrestrial organic matter is the most relevant process of DOC sequestration into ground ice.
H. N. Mbufong, M. Lund, M. Aurela, T. R. Christensen, W. Eugster, T. Friborg, B. U. Hansen, E. R. Humphreys, M. Jackowicz-Korczynski, L. Kutzbach, P. M. Lafleur, W. C. Oechel, F. J. W. Parmentier, D. P. Rasse, A. V. Rocha, T. Sachs, M. K. van der Molen, and M. P. Tamstorf
Biogeosciences, 11, 4897–4912, https://doi.org/10.5194/bg-11-4897-2014, https://doi.org/10.5194/bg-11-4897-2014, 2014
B. Heim, E. Abramova, R. Doerffer, F. Günther, J. Hölemann, A. Kraberg, H. Lantuit, A. Loginova, F. Martynov, P. P. Overduin, and C. Wegner
Biogeosciences, 11, 4191–4210, https://doi.org/10.5194/bg-11-4191-2014, https://doi.org/10.5194/bg-11-4191-2014, 2014
J. D. Watts, J. S. Kimball, F. J. W. Parmentier, T. Sachs, J. Rinne, D. Zona, W. Oechel, T. Tagesson, M. Jackowicz-Korczyński, and M. Aurela
Biogeosciences, 11, 1961–1980, https://doi.org/10.5194/bg-11-1961-2014, https://doi.org/10.5194/bg-11-1961-2014, 2014
S. Dengel, D. Zona, T. Sachs, M. Aurela, M. Jammet, F. J. W. Parmentier, W. Oechel, and T. Vesala
Biogeosciences, 10, 8185–8200, https://doi.org/10.5194/bg-10-8185-2013, https://doi.org/10.5194/bg-10-8185-2013, 2013
B. R. K. Runkle, T. Sachs, C. Wille, E.-M. Pfeiffer, and L. Kutzbach
Biogeosciences, 10, 1337–1349, https://doi.org/10.5194/bg-10-1337-2013, https://doi.org/10.5194/bg-10-1337-2013, 2013
T. Krings, K. Gerilowski, M. Buchwitz, J. Hartmann, T. Sachs, J. Erzinger, J. P. Burrows, and H. Bovensmann
Atmos. Meas. Tech., 6, 151–166, https://doi.org/10.5194/amt-6-151-2013, https://doi.org/10.5194/amt-6-151-2013, 2013
Related subject area
Discipline: Frozen ground | Subject: Remote Sensing
Toward long-term monitoring of regional permafrost thaw with satellite interferometric synthetic aperture radar
Landcover succession for recently drained lakes in permafrost on the Yamal peninsula, Western Siberia
Allometric scaling of retrogressive thaw slumps
Brief communication: Identification of tundra topsoil frozen/thawed state from SMAP and GCOM-W1 radiometer measurements using the spectral gradient method
Bedfast and floating-ice dynamics of thermokarst lakes using a temporal deep-learning mapping approach: case study of the Old Crow Flats, Yukon, Canada
Contribution of ground ice melting to the expansion of Selin Co (lake) on the Tibetan Plateau
Incorporating InSAR kinematics into rock glacier inventories: insights from 11 regions worldwide
Assessing volumetric change distributions and scaling relations of retrogressive thaw slumps across the Arctic
Top-of-permafrost ground ice indicated by remotely sensed late-season subsidence
Inventory and changes of rock glacier creep speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s
The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: fast-forward into the future
Global Positioning System interferometric reflectometry (GPS-IR) measurements of ground surface elevation changes in permafrost areas in northern Canada
InSAR time series analysis of seasonal surface displacement dynamics on the Tibetan Plateau
Brief communication: Rapid machine-learning-based extraction and measurement of ice wedge polygons in high-resolution digital elevation models
Sensitivity of active-layer freezing process to snow cover in Arctic Alaska
An estimate of ice wedge volume for a High Arctic polar desert environment, Fosheim Peninsula, Ellesmere Island
Taha Sadeghi Chorsi, Franz J. Meyer, and Timothy H. Dixon
The Cryosphere, 18, 3723–3740, https://doi.org/10.5194/tc-18-3723-2024, https://doi.org/10.5194/tc-18-3723-2024, 2024
Short summary
Short summary
The active layer thaws and freezes seasonally. The annual freeze–thaw cycle of the active layer causes significant surface height changes due to the volume difference between ice and liquid water. We estimate the subsidence rate and active-layer thickness (ALT) for part of northern Alaska for summer 2017 to 2022 using interferometric synthetic aperture radar and lidar. ALT estimates range from ~20 cm to larger than 150 cm in area. Subsidence rate varies between close points (2–18 mm per month).
Clemens von Baeckmann, Annett Bartsch, Helena Bergstedt, Aleksandra Efimova, Barbara Widhalm, Dorothee Ehrich, Timo Kumpula, Alexander Sokolov, and Svetlana Abdulmanova
EGUsphere, https://doi.org/10.5194/egusphere-2024-699, https://doi.org/10.5194/egusphere-2024-699, 2024
Short summary
Short summary
Lakes are common features in Arctic permafrost areas. Landcover change following their drainage needs to be monitored since it has implications for ecology and the carbon cycle. Satellite data are key in this context. We compared a common vegetation index approach with a novel landcover monitoring scheme. Landcover information provides specifically information on wetland features. We also showed that the bioclimatic gradients play a significant role after drainage within the first 10 years.
Jurjen van der Sluijs, Steven V. Kokelj, and Jon F. Tunnicliffe
The Cryosphere, 17, 4511–4533, https://doi.org/10.5194/tc-17-4511-2023, https://doi.org/10.5194/tc-17-4511-2023, 2023
Short summary
Short summary
There is an urgent need to obtain size and erosion estimates of climate-driven landslides, such as retrogressive thaw slumps. We evaluated surface interpolation techniques to estimate slump erosional volumes and developed a new inventory method by which the size and activity of these landslides are tracked through time. Models between slump area and volume reveal non-linear intensification, whereby model coefficients improve our understanding of how permafrost landscapes may evolve over time.
Konstantin Muzalevskiy, Zdenek Ruzicka, Alexandre Roy, Michael Loranty, and Alexander Vasiliev
The Cryosphere, 17, 4155–4164, https://doi.org/10.5194/tc-17-4155-2023, https://doi.org/10.5194/tc-17-4155-2023, 2023
Short summary
Short summary
A new all-weather method for determining the frozen/thawed (FT) state of soils in the Arctic region based on satellite data was proposed. The method is based on multifrequency measurement of brightness temperatures by the SMAP and GCOM-W1/AMSR2 satellites. The created method was tested at sites in Canada, Finland, Russia, and the USA, based on climatic weather station data. The proposed method identifies the FT state of Arctic soils with better accuracy than existing methods.
Maria Shaposhnikova, Claude Duguay, and Pascale Roy-Léveillée
The Cryosphere, 17, 1697–1721, https://doi.org/10.5194/tc-17-1697-2023, https://doi.org/10.5194/tc-17-1697-2023, 2023
Short summary
Short summary
We explore lake ice in the Old Crow Flats, Yukon, Canada, using a novel approach that employs radar imagery and deep learning. Results indicate an 11 % increase in the fraction of lake ice that grounds between 1992/1993 and 2020/2021. We believe this is caused by widespread lake drainage and fluctuations in water level and snow depth. This transition is likely to have implications for permafrost beneath the lakes, with a potential impact on methane ebullition and the regional carbon budget.
Lingxiao Wang, Lin Zhao, Huayun Zhou, Shibo Liu, Erji Du, Defu Zou, Guangyue Liu, Yao Xiao, Guojie Hu, Chong Wang, Zhe Sun, Zhibin Li, Yongping Qiao, Tonghua Wu, Chengye Li, and Xubing Li
The Cryosphere, 16, 2745–2767, https://doi.org/10.5194/tc-16-2745-2022, https://doi.org/10.5194/tc-16-2745-2022, 2022
Short summary
Short summary
Selin Co has exhibited the greatest increase in water storage among all the lakes on the Tibetan Plateau in the past decades. This study presents the first attempt to quantify the water contribution of ground ice melting to the expansion of Selin Co by evaluating the ground surface deformation since terrain surface settlement provides a
windowto detect the subsurface ground ice melting. Results reveal that ground ice meltwater contributed ~ 12 % of the lake volume increase during 2017–2020.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Philipp Bernhard, Simon Zwieback, Nora Bergner, and Irena Hajnsek
The Cryosphere, 16, 1–15, https://doi.org/10.5194/tc-16-1-2022, https://doi.org/10.5194/tc-16-1-2022, 2022
Short summary
Short summary
We present an investigation of retrogressive thaw slumps in 10 study sites across the Arctic. These slumps have major impacts on hydrology and ecosystems and can also reinforce climate change by the mobilization of carbon. Using time series of digital elevation models, we found that thaw slump change rates follow a specific type of distribution that is known from landslides in more temperate landscapes and that the 2D area change is strongly related to the 3D volumetric change.
Simon Zwieback and Franz J. Meyer
The Cryosphere, 15, 2041–2055, https://doi.org/10.5194/tc-15-2041-2021, https://doi.org/10.5194/tc-15-2041-2021, 2021
Short summary
Short summary
Thawing of ice-rich permafrost leads to subsidence and slumping, which can compromise Arctic infrastructure. However, we lack fine-scale maps of permafrost ground ice, chiefly because it is usually invisible at the surface. We show that subsidence at the end of summer serves as a
fingerprintwith which near-surface permafrost ground ice can be identified. As this can be done with satellite data, this method may help improve ground ice maps and thus sustainably steward the Arctic.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Ingmar Nitze, Sarah W. Cooley, Claude R. Duguay, Benjamin M. Jones, and Guido Grosse
The Cryosphere, 14, 4279–4297, https://doi.org/10.5194/tc-14-4279-2020, https://doi.org/10.5194/tc-14-4279-2020, 2020
Short summary
Short summary
In summer 2018, northwestern Alaska was affected by widespread lake drainage which strongly exceeded previous observations. We analyzed the spatial and temporal patterns with remote sensing observations, weather data and lake-ice simulations. The preceding fall and winter season was the second warmest and wettest on record, causing the destabilization of permafrost and elevated water levels which likely led to widespread and rapid lake drainage during or right after ice breakup.
Jiahua Zhang, Lin Liu, and Yufeng Hu
The Cryosphere, 14, 1875–1888, https://doi.org/10.5194/tc-14-1875-2020, https://doi.org/10.5194/tc-14-1875-2020, 2020
Short summary
Short summary
Ground surface in permafrost areas undergoes uplift and subsides seasonally due to freezing–thawing active layer. Surface elevation change serves as an indicator of frozen-ground dynamics. In this study, we identify 12 GPS stations across the Canadian Arctic, which are useful for measuring elevation changes by using reflected GPS signals. Measurements span from several years to over a decade and at daily intervals and help to reveal frozen ground dynamics at various temporal and spatial scales.
Eike Reinosch, Johannes Buckel, Jie Dong, Markus Gerke, Jussi Baade, and Björn Riedel
The Cryosphere, 14, 1633–1650, https://doi.org/10.5194/tc-14-1633-2020, https://doi.org/10.5194/tc-14-1633-2020, 2020
Short summary
Short summary
In this research we present the results of our satellite analysis of a permafrost landscape and periglacial landforms in mountainous regions on the Tibetan Plateau. We study seasonal and multiannual surface displacement processes, such as the freezing and thawing of the ground, seasonally accelerated sliding on steep slopes, and continuous permafrost creep. This study is the first step of our goal to create an inventory of actively moving landforms within the Nyainqêntanglha range.
Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Cathy J. Wilson
The Cryosphere, 13, 237–245, https://doi.org/10.5194/tc-13-237-2019, https://doi.org/10.5194/tc-13-237-2019, 2019
Short summary
Short summary
We present a workflow that uses a machine-learning algorithm known as a convolutional neural network (CNN) to rapidly delineate ice wedge polygons in high-resolution topographic datasets. Our workflow permits thorough assessments of polygonal microtopography at the kilometer scale or greater, which can improve understanding of landscape hydrology and carbon budgets. We demonstrate that a single CNN can be trained to delineate polygons with high accuracy in diverse tundra settings.
Yonghong Yi, John S. Kimball, Richard H. Chen, Mahta Moghaddam, and Charles E. Miller
The Cryosphere, 13, 197–218, https://doi.org/10.5194/tc-13-197-2019, https://doi.org/10.5194/tc-13-197-2019, 2019
Short summary
Short summary
To better understand active-layer freezing process and its climate sensitivity, we developed a new 1 km snow data set for permafrost modeling and used the model simulations with multiple new in situ and P-band radar data sets to characterize the soil freeze onset and duration of zero curtain in Arctic Alaska. Results show that zero curtains of upper soils are primarily affected by early snow cover accumulation, while zero curtains of deeper soils are more closely related to maximum thaw depth.
Claire Bernard-Grand'Maison and Wayne Pollard
The Cryosphere, 12, 3589–3604, https://doi.org/10.5194/tc-12-3589-2018, https://doi.org/10.5194/tc-12-3589-2018, 2018
Short summary
Short summary
This study provides a first approximation of the volume of ice in ice wedges, a ground-ice feature in permafrost for a High Arctic polar desert region. We demonstrate that Geographical Information System analyses can be used on satellite images to estimate ice wedge volume. We estimate that 3.81 % of the top 5.9 m of permafrost could be ice-wedge ice on the Fosheim Peninsula. In response to climate change, melting ice wedges will result in widespread terrain disturbance in this region.
Cited articles
Agisoft: Agisoft PhotoScan User Manual: Professional Edition, Version 1.4,
Agisoft, 2018.
Assmann, J. J.: Arctic tundra plant phenology and greenness across space and
time, PhD thesis, University of Edinburgh, 2019.
Barnhart, K. R., Anderson, R. S., Overeem, I., Wobus, C., Clow, G. D., and
Urban, F. E.: Modeling erosion of ice-rich permafrost bluffs along the
Alaskan Beaufort Sea coast, J. Geophys. Res.-Earth, 119, 1155–1179,
https://doi.org/10.1002/2013JF002845, 2014.
Bell, L. E., Bluhm, B. A., and Iken, K.: Influence of terrestrial organic
matter in marine food webs of the Beaufort Sea shelf and slope, Mar. Ecol.
Prog. Ser., 550, 1–24, https://doi.org/10.3354/meps11725, 2016.
Boak, E. H. and Turner, I. L.: Shoreline definition and detection: a review,
J. Coastal Res., 2005, 688–703, https://doi.org/10.2112/03-0071.1, 2005.
Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., and Melnikov, E. S.:
Circum-Arctic map of permafrost and ground-ice conditions, USGS Numbered
Series, available at: http://pubs.er.usgs.gov/publication/cp45 (last
access: 9 April 2018), 1997.
Burn, C. R.: Herschel Island Qikiqtaryuk: A Natural and Cultural History of
Yukon's Arctic Island, 1st edn., Calgary University Press, Calgary, Canada,
2012.
Burn, C. R. and Zhang, Y.: Permafrost and climate change at Herschel Island
(Qikiqtaruq), Yukon Territory, Canada, J. Geophys. Res., 114, F02001,
https://doi.org/10.1029/2008JF001087, 2009.
Carrivick, J. L., Smith, M. W., and Quincey, D. J.: Structure from Motion in
the Geosciences, John Wiley & Sons, Ltd, Chichester, UK, 2016.
Casella, E., Rovere, A., Pedroncini, A., Mucerino, L., Casella, M., Cusati,
L. A., Vacchi, M., Ferrari, M., and Firpo, M.: Study of wave runup using
numerical models and low-altitude aerial photogrammetry: A tool for coastal
management, Estuar. Coast. Shelf S., 149, 160–167,
https://doi.org/10.1016/j.ecss.2014.08.012, 2014.
Casella, E., Rovere, A., Pedroncini, A., Stark, C. P., Casella, M., Ferrari,
M., and Firpo, M.: Drones as tools for monitoring beach topography changes in
the Ligurian Sea (NW Mediterranean), Geo-Mar. Lett., 36, 151–163,
https://doi.org/10.1007/s00367-016-0435-9, 2016.
Couture, N. J. and Pollard, W. H.: A Model for Quantifying Ground-Ice Volume,
Yukon Coast, Western Arctic Canada, Permafrost Periglac., 28, 534–542,
https://doi.org/10.1002/ppp.1952, 2017.
Couture, N. J., Irrgang, A., Pollard, W., Lantuit, H., and Fritz, M.: Coastal
Erosion of Permafrost Soils Along the Yukon Coastal Plain and Fluxes of
Organic Carbon to the Canadian Beaufort Sea, J. Geophys. Res.-Biogeo., 123,
406–422, https://doi.org/10.1002/2017JG004166, 2018.
Cunliffe, A. and Anderson, K.: Measuring Above-ground Biomass with Drone
Photogrammetry: Data Collection Protocol, Protocol Exchange,
https://doi.org/10.1038/protex.2018.134, 2019.
Cunliffe, A., Palmer, W., and Tanski, G.: Timelapse Video of Eroding
Permafrost Coastline, Copernicus Publications, https://doi.org/10.5446/40250, 2017.
Cunliffe, A. M., Brazier, R. E., and Anderson, K.: Ultra-fine grain
landscape-scale quantification of dryland vegetation structure with
drone-acquired structure-from-motion photogrammetry, Remote Sens. Environ.,
183, 129–143, https://doi.org/10.1016/j.rse.2016.05.019, 2016.
Cunliffe, A. M., Tanski, G., Radosavljevic, B., Palmer, W., Sachs, T., Kerby,
J. T., and Myers-Smith, I. H .: Aerial images of eroding permafrost
coastline, Qikiqtaruk – Hershel Island, Yukon, Canada, PANGAEA,
https://doi.pangaea.de/10.1594/PANGAEA.901852, 2019.
DeBell, L., Anderson, K., Brazier, R. E., King, N., and Jones, L.: Water
resource management at catchment scales using lightweight UAVs: current
capabilities and future perspectives, Journal of Unmanned Vehicle Systems, 4,
7–30, https://doi.org/10.1139/juvs-2015-0026, 2015.
Dolan, R., Fenster, M. S., and Holme, S. J.: Temporal analysis of shoreline
recession and accretion, J. Coastal Res., 7, 723–744, 1991.
Duffy, J. P., Cunliffe, A. M., DeBell, L., Sandbrook, C., Wich, S. A.,
Shutler, J. D., Myers-Smith, I. H., Varela, M. R., and Anderson, K.:
Location, location, location: considerations when using lightweight drones in
challenging environments, Remote Sens. Ecol. Conserv., 4, 7–19,
https://doi.org/10.1002/rse2.58, 2017a.
Duffy, J. P., Pratt, L., Anderson, K., Land, P. E., and Shutler, J. D.:
Spatial assessment of intertidal seagrass meadows using optical imaging
systems and a lightweight drone, Estuar. Coast. Shelf S.,
https://doi.org/10.1016/j.ecss.2017.11.001, 2017b.
Dunton, K. H., Weingartner, T., and Carmack, E. C.: The nearshore western
Beaufort Sea ecosystem: Circulation and importance of terrestrial carbon in
arctic coastal food webs, Prog. Oceanogr., 71, 362–378,
https://doi.org/10.1016/j.pocean.2006.09.011, 2006.
Environment Canada: http://climate.weather.gc.ca/climate_data (last
access: 3 January 2018), 2017.
ESRI, TerraColor and Earthstar Geographics: Basemap, available at:
http://goto.arcgisonline.com/maps/Arctic_Imagery (last access:
7 February 2019), 2018.
Farquharson, L. M., Mann, D. H., Swanson, D. K., Jones, B. M., Buzard, R. M.,
and Jordan, J. W.: Temporal and spatial variability in coastline response to
declining sea-ice in northwest Alaska, Mar. Geol., 404, 71–83,
https://doi.org/10.1016/j.margeo.2018.07.007, 2018.
Fritz, M., Wetterich, S., Meyer, H., Schirrmeister, L., Lantuit, H., and
Pollard, W. H.: Origin and characteristics of massive ground ice on Herschel
Island (western Canadian Arctic) as revealed by stable water isotope and
Hydrochemical signatures, Permafrost Periglac., 22, 26–38,
https://doi.org/10.1002/ppp.714, 2011.
Fritz, M., Wetterich, S., Schirrmeister, L., Meyer, H., Lantuit, H.,
Preusser, F., and Pollard, W. H.: Eastern Beringia and beyond: Late
Wisconsinan and Holocene landscape dynamics along the Yukon Coastal Plain,
Canada, Palaeogeogr. Palaeocl., 319–320, 28–45,
https://doi.org/10.1016/j.palaeo.2011.12.015, 2012.
Fritz, M., Vonk, J. E., and Lantuit, H.: Collapsing Arctic coastlines, Nat.
Clim. Change, 7, 6–7, https://doi.org/10.1038/nclimate3188, 2017.
Galley, R. J., Babb, D., Ogi, M., Else, B. G. T., Geilfus, N.-X., Crabeck,
O., Barber, D. G., and Rysgaard, S.: Replacement of multiyear sea ice and
changes in the open water season duration in the Beaufort Sea since 2004, J.
Geophys. Res.-Oceans, 121, 1806–1823, https://doi.org/10.1002/2015JC011583, 2016.
Günther, F., Overduin, P. P., Sandakov, A., Grosse, G., and Grigoriev, M.
N.: Thermo-erosion along the Yedoma coast of the Buor Khaya peninsula, Laptev
Sea, East Siberia, in: Proceedings of the Tenth International Conference on
Permafrost, edited by: Hinkel, K., Volume 1: International Contributions,
137–142, 2012.
Günther, F., Overduin, P. P., Sandakov, A. V., Grosse, G., and Grigoriev,
M. N.: Short- and long-term thermo-erosion of ice-rich permafrost coasts in
the Laptev Sea region, Biogeosciences, 10, 4297–4318,
https://doi.org/10.5194/bg-10-4297-2013, 2013.
Günther, F., Overduin, P. P., Yakshina, I. A., Opel, T., Baranskaya, A.
V., and Grigoriev, M. N.: Observing Muostakh disappear: permafrost thaw
subsidence and erosion of a ground-ice-rich island in response to arctic
summer warming and sea ice reduction, The Cryosphere, 9, 151–178,
https://doi.org/10.5194/tc-9-151-2015, 2015.
Harper, J. R., Reimer, P. D., and Collins, A. D.: Canadian Beaufort Sea
physical shore-zone analysis, Report for Northern Oil and Gas Action Plan,
Indian and Northern Affairs Canada Ottawa, Canada, available at:
https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=130252
(last access: 5 May 2019), 1985.
Héquette, A. and Barnes, P. W.: Coastal retreat and shoreface profile
variations in the Canadian Beaufort Sea, Mar. Geol., 91, 113–132,
https://doi.org/10.1016/0025-3227(90)90136-8, 1990.
Héquette, A., Desrosiers, M., and Barnes, P. W.: Sea ice scouring on the
inner shelf of the southeastern Canadian Beaufort Sea, Mar. Geol., 128,
201–219, https://doi.org/10.1016/0025-3227(95)00095-G, 1995.
Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., and Farris, A. S.:
Digital Shoreline Analysis System (DSAS) version 5.0 user guide, Report,
Reston, VA, Open-File Report 2018-1179, 2018.
Hope, A. S., Pence, K. R., and Stow, D. A.: NDVI from low altitude aircraft
and composited NOAA AVHRR data for scaling Arctic ecosystem fluxes, Int.
J. Remote Sens., 25, 4237–4250, https://doi.org/10.1080/01431160310001632710, 2004.
Huggett, W. S., Woodward, M. J., Stephenson, F., Hermiston, F. V., and
Douglas, A.: Near and Bottom Currents and Offshore Tides, Ocean and Aquatic
Sciences, Depatment of Envrionment, Victoria, Canada, Beaufort Sea Technical
Report No. 16, 1975.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V.,
and Midgley, P., Cambridge University Press, Cambridge, United Kingdom,
996 pp., 2013.
Irrgang, A. M., Lantuit, H., Manson, G. K., Günther, F., Grosse, G., and
Overduin, P. P.: Variability in Rates of Coastal Change Along the Yukon
Coast, 1951 to 2015, J. Geophys. Res.-Earth, 123, 779–800,
https://doi.org/10.1002/2017JF004326, 2018.
James, M. R., Robson, S., d'Oleire-Oltmanns, S., and Niethammer, U.:
Optimising UAV topographic surveys processed with structure-from-motion:
Ground control quality, quantity and bundle adjustment, Geomorphology, 280,
51–66, https://doi.org/10.1016/j.geomorph.2016.11.021, 2017.
James, T. S., Henton, J. A., Leonard, L. J., Darlington, A., Forbes, D. L.,
and Craymer, M.: Relative sea-level projections in Canada and the adjacent
mainland United States,Geological Survey of Canada, Ottawa, Ontario, Open
file 7737, available at:
http://publications.gc.ca/site/eng/9.819835/publication.html (last
access: 10 May 2019), 2014.
Jones, B. M., Hinkel, K. M., Arp, C. D., and Eisner, W. R.: Modern erosion
rates and loss of coastal features and sites, Beaufort Sea coastline, Alaska,
Arctic, 61, 361–372, , 2008.
Jones, B. M., Arp, C. D., Beck, R. A., Grosse, G., Webster, J. M., and Urban,
F. E.: Erosional history of Cape Halkett and contemporary monitoring of bluff
retreat, Beaufort Sea coast, Alaska, Polar Geography, 32, 129–142,
https://doi.org/10.1080/10889370903486449, 2009a.
Jones, B. M., Arp, C. D., Jorgenson, M. T., Hinkel, K. M., Schmutz, J. A.,
and Flint, P. L.: Increase in the rate and uniformity of coastline erosion in
Arctic Alaska, Geophys. Res. Lett., 36, L03503, https://doi.org/10.1029/2008GL036205,
2009b.
Jones, B. M., Farquharson, L. M., Baughman, C. A., Buzard, R. M., Arp, C. D.,
Grosse, G., Bull, D. L., Günther, F., Nitze, I., Urban, F., Kasper, J.
L., Frederick, J. M., Thomas, M., Jones, C., Mota, A., Dallimore, S.,
Tweedie, C., Maio, C., Mann, D. H., Richmond, B., Gibbs, A., Xiao, M., Sachs,
T., Iwahana, G., Kanevskiy, M., and Romanovsky, V. E.: A decade of remotely
sensed observations highlight complex processes linked to coastal permafrost
bluff erosion in the Arctic, Environ. Res. Lett., 13, 115001,
https://doi.org/10.1088/1748-9326/aae471, 2018.
Jorgenson, M. T. and Brown, J.: Classification of the Alaskan Beaufort Sea
Coast and estimation of carbon and sediment inputs from coastal erosion,
Geo-Mar. Lett., 25, 69–80, https://doi.org/10.1007/s00367-004-0188-8, 2005.
Klemas, V. V.: Coastal and environmental remote sensing from unmanned aerial
vehicles: an overview, J. Coastal Res., 1260–1267,
https://doi.org/10.2112/JCOASTRES-D-15-00005.1, 2015.
Kritsuk, L. N., Dubrovin, V. A., and Yastreba, N. V.: Some results of
integrated study of the Kara Sea coastal dynamics in the Marre-Sale
meteorological station area, with the use of GIS technologies, Earth's
Cryosphere, 4, 59–69, 2014.
Lantuit, H. and Pollard, W. H.: Temporal stereophotogrammetric analysis of
retrogressive thaw slumps on Herschel Island, Yukon Territory, Nat. Hazards
Earth Syst. Sci., 5, 413–423, https://doi.org/10.5194/nhess-5-413-2005, 2005.
Lantuit, H. and Pollard, W. H.: Fifty years of coastal erosion and
retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea,
Yukon Territory, Canada, Geomorphology, 95, 84–102,
https://doi.org/10.1016/j.geomorph.2006.07.040, 2008.
Lantuit, H., Overduin, P. P., Couture, N., Wetterich, S., Aré, F.,
Atkinson, D., Brown, J., Cherkashov, G., Drozdov, D., Forbes, D. L.,
Graves-Gaylord, A., Grigoriev, M., Hubberten, H.-W., Jordan, J., Jorgenson,
T., Ødegård, R. S., Ogorodov, S., Pollard, W. H., Rachold, V.,
Sedenko, S., Solomon, S., Steenhuisen, F., Streletskaya, I., and Vasiliev,
A.: The Arctic Coastal Dynamics Database: A New Classification Scheme and
Statistics on Arctic Permafrost Coastlines, Estuar. Coast., 35, 383–400,
https://doi.org/10.1007/s12237-010-9362-6, 2012.
Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., and
Gabbianelli, G.: Using unmanned aerial vehicles (UAV) for high-resolution
reconstruction of topography: the structure from motion approach on coastal
environments, Remote Sensing, 5, 6880–6898, https://doi.org/10.3390/rs5126880, 2013.
Manson, G. K., Solomon, S. M., Forbes, D. L., Atkinson, D. E., and Craymer,
M.: Spatial variability of factors influencing coastal change in the Western
Canadian Arctic, Geo-Mar. Lett., 25, 138–145,
https://doi.org/10.1007/s00367-004-0195-9, 2005.
Mars, J. C. and Houseknecht, D. W.: Quantitative remote sensing study
indicates doubling of coastal erosion rate in past 50 yr along a segment of
the Arctic coast of Alaska, Geology, 35, 583–586, https://doi.org/10.1130/G23672A.1,
2007.
Metcalfe, D. B., Hermans, T. D. G., Ahlstrand, J., Becker, M., Berggren, M.,
Björk, R. G., Björkman, M. P., Blok, D., Chaudhary, N., Chisholm, C.,
Classen, A. T., Hasselquist, N. J., Jonsson, M., Kristensen, J. A., Kumordzi,
B. B., Lee, H., Mayor, J. R., Prevéy, J., Pantazatou, K., Rousk, J.,
Sponseller, R. A., Sundqvist, M. K., Tang, J., Uddling, J., Wallin, G.,
Zhang, W., Ahlström, A., Tenenbaum, D. E., and Abdi, A. M.: Patchy field
sampling biases understanding of climate change impacts across the Arctic,
Nature Ecology & Evolution, 2, 1443, https://doi.org/10.1038/s41559-018-0612-5,
2018.
Myers-Smith, I. H. and Lehtonen, S.: NOAA's Arkctic: The Great Flood of July
2016, Team Shrub: Tundra Ecology Lab, available at:
https://teamshrub.com/2016/07/22/noaas-arkctic-the-great-flood-of-july-2016/
(last access: 11 February 2018), 2016.
Myers-Smith, I. H., Grabowski, M. M., Thomas, H. J. D., Angers-Blondin, S.,
Daskalova, G. N., Bjorkman, A. D., Cunliffe, A. M., Assmann, J. J., Boyle, J.
S., McLeod, E., McLeod, S., Joe, R., Lennie, P., Arey, D., Gordon, R. R., and
Eckert, C. D.: Eighteen years of ecological monitoring reveals multiple lines
of evidence for tundra vegetation change, Ecol. Monogr., 89, e01351,
https://doi.org/10.1002/ecm.1351, 2019.
Novikova, A., Belova, N., Baranskaya, A., Aleksyutina, D., Maslakov, A.,
Zelenin, E., Shabanova, N., and Ogorodov, S.: Dynamics of permafrost coasts
of Baydaratskaya Bay (Kara Sea) based on multi-temporal remote sensing data,
Remote Sensing, 10, 1481, https://doi.org/10.3390/rs10091481, 2018.
Obu, J., Lantuit, H., Myers-Smith, I., Heim, B., Wolter, J., and Fritz, M.:
Effect of terrain characteristics on soil organic carbon and total nitrogen
stocks in soils of Herschel Island, Western Canadian Arctic, Permafrost
Periglac., 28, 92–107, https://doi.org/10.1002/ppp.1881, 2015.
Obu, J., Lantuit, H., Fritz, M., Pollard, W. H., Sachs, T., and Guenther, F.:
Relation between planimetric and volumetric measurements of permafrost coast
erosion: a case study from Herschel Island, western Canadian Arctic, Polar
Res., 35, 30313, https://doi.org/10.3402/polar.v35.30313, 2016.
Ogorodov, S. A., Baranskaya, A., Belova, N. G., Kamalov, A. M., Kuznetsov, D.
E., Overduin, P., Shabanova, N. N., and Vergun, A. P.: Coastal Dynamics of
the Pechora and Kara Seas Under Changing Climatic Conditions and Human
Disturbances, Geography, Environment, Sustainability, 9, 53–73,
https://doi.org/10.15356/2071-9388_03v09_2016_04, 2016.
Olynyk, D.: Buildings, in Herschel Island – Qikiqtaryuk: A natural and
cultural history of Yukon's Arctic island, edited by: Burn, C. R., University
of Calgary Press, Calgary, Canada, 202–209, 2012.
Overduin, P. P., Strzelecki, M. C., Grigoriev, M. N., Couture, N., Lantuit,
H., St-Hilaire-Gravel, D., Günther, F., and Wetterich, S.: Coastal
changes in the Arctic, in: Sedimentary Coastal Zones from High to Low
Latitudes: Similarities and Differences, Geological Society, London, UK,
Special Publications, 388, 103–129, https://doi.org/10.1144/SP388.13, 2014.
Ping, C.-L., Michaelson, G. J., Guo, L., Jorgenson, M. T., Kanevskiy, Shur,
Y., Dou, F., and Liang, J.: Soil carbon and material fluxes across the
eroding Alaska Beaufort Sea coastline, J. Geophys. Res., 116, G02004,
https://doi.org/10.1029/2010JG001588, 2011.
Pollard, W.: The Nature and Origin of Ground Ice in the Herschel Island Area,
Yukon Territory, in: 5th Canadian Permafrost Conference, Universite Laval,
Québec, 6–8 June 1990.
Radosavljevic, B., Lantuit, H., Pollard, W., Overduin, P., Couture, N.,
Sachs, T., Helm, V., and Fritz, M.: Erosion and Flooding-Threats to Coastal
Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon
Territory, Canada, Estuaries Coasts, 39, 900–915,
https://doi.org/10.1007/s12237-015-0046-0, 2016.
Rampton, V. N.: Quaternary geology of the Yukon Coastal Plain, Geological
Survey of Canada, Bulletin 317, 49 pp., https://doi.org/10.4095/111347, 1982.
Retamal, L., Bonilla, S., and Vincent, W. F.: Optical gradients and
phytoplankton production in the Mackenzie River and the coastal Beaufort Sea,
Polar Biol., 31, 363–379, https://doi.org/10.1007/s00300-007-0365-0, 2008.
Richter-Menge, J., Overland, J. E., Mathis, J. T., and Osborne, E.: Arctic
Report Card 2017, available at: http://www.arctic.noaa.gov/Report-Card
(last access: 10 May 2019), 2017.
Río, L. D. and Gracia, F. J.: Error determination in the photogrammetric
assessment of shoreline changes, Nat. Hazards, 65, 2385–2397,
https://doi.org/10.1007/s11069-012-0407-y, 2013.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali,
S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat,
C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback,
Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Semiletov, I., Pipko, I., Gustafsson, Ö., Anderson, L. G., Sergienko, V.,
Pugach, S., Dudarev, O., Charkin, A., Gukov, A., Bröder, L., Andersson,
A., Spivak, E., and Shakhova, N.: Acidification of East Siberian Arctic Shelf
waters through addition of freshwater and terrestrial carbon, Nat. Geosci.,
9, 361–365, https://doi.org/10.1038/ngeo2695, 2016.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Global Planet. Change, 77, 85–96,
https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Solomon, S. M., Forbes, D. L., and Kierstead, B.: Coastal impacts of climate
change: Beaufort Sea erosion study, Natural Resources Canada, Geological
Survey of Canada, Ottawa, Ontario, Open File Number 2890, M183-2/2890E-PDF,
available at:
http://publications.gc.ca/site/eng/9.820125/publication.html (last
access: 5 December 2018), 1993.
Sona, G., Pinto, L., Pagliari, D., Passoni, D., and Gini, R.: Experimental
analysis of different software packages for orientation and digital surface
modelling from UAV images, Earth Sci. Inform., 7, 97–107,
https://doi.org/10.1007/s12145-013-0142-2, 2014.
Stow, D. A., Hope, A., McGuire, D., Verbyla, D., Gamon, J., Huemmrich, F.,
Houston, S., Racine, C., Sturm, M., Tape, K., Hinzman, L., Yoshikawa, K.,
Tweedie, C., Noyle, B., Silapaswan, C., Douglas, D., Griffith, B., Jia, G.,
Epstein, H., Walker, D., Daeschner, S., Petersen, A., Zhou, L., and Myneni,
R.: Remote sensing of vegetation and land-cover change in Arctic Tundra
Ecosystems, Remote Sens. Environ., 89, 281–308,
https://doi.org/10.1016/j.rse.2003.10.018, 2004.
Stroeve, J. C., Markus, T., Miller, J., and Barrett, A.: Changes in Arctic
melt season and implications for sea ice loss, Geophys. Res. Lett., 41,
1216–1225, https://doi.org/10.1002/2013GL058951, 2014.
Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., and Ergul, A.: The
Digital Shoreline Analysis System (DSAS) Version 4.0 – An ArcGIS extension
for calculating shoreline change (Ver.4.4, July 2017), USGS Numbered Series,
U.S. Geological Survey, Reston, Open-File Report 2008-1278,
https://doi.org/10.3133/ofr20081278, 2009.
Turner, I. L., Harley, M. D., and Drummond, C. D.: UAVs for coastal
surveying, Coast. Eng., 114, 19–24, https://doi.org/10.1016/j.coastaleng.2016.03.011,
2016.
UNEP: Policy Implications of Warming Permafrost, UNEP, available at:
https://epic.awi.de/33086/1/permafrost.pdf (last access: 10 May 2019),
2012.
UNESCO: Ivvavik/Vuntut/Herschel Island (Qikiqtaruk), UNESCO World Heritage
Centre, available at: http://whc.unesco.org/en/tentativelists/1939/
(last access: 7 February 2018), 2004.
Vasiliev, A., Kanevskiy, M., Cherkashov, G., and Vanshtein, B.: Coastal
dynamics at the Barents and Kara Sea key sites, Geo-Mar. Lett., 25, 110–120,
https://doi.org/10.1007/s00367-004-0192-z, 2005.
Vonk, J. E., Sánchez-García, L., Dongen, B. E. van, Alling, V.,
Kosmach, D., Charkin, A., Semiletov, I. P., Dudarev, O. V., Shakhova, N.,
Roos, P., Eglinton, T. I., Andersson, A., and Gustafsson, Ö.: Activation
of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia,
Nature, 489, 137–140, https://doi.org/10.1038/nature11392, 2012.
Wegner, C., Bennett, K. E., Vernal, A. de, Forwick, M., Fritz, M.,
Heikkilä, M., Łącka, M., Lantuit, H., Laska, M., Moskalik, M.,
O'Regan, M., Pawłowska, J., Promińska, A., Rachold, V., Vonk, J. E.,
and Werner, K.: Variability in transport of terrigenous material on the
shelves and the deep Arctic Ocean during the Holocene, Polar Res., 34, 24964,
https://doi.org/10.3402/polar.v34.24964, 2015.
Wessel, P. and Smith, W. H. F.: A Global, Self-Consistent, Hierarchical,
High-Resolution Shoreline Database, J. Geophys. Res., 101, 8741–8743,
https://doi.org/10.1029/96JB00104, 1996.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds,
J. M.: 'Structure-from-motion' photogrammetry: A low-cost, effective tool for
geoscience applications, Geomorphology, 179, 300–314,
https://doi.org/10.1016/j.geomorph.2012.08.021, 2012.
Whalen, D.: Monitoring, understanding and predicting costal change in the
Mackenzie-Beaufort Region, NT, Quebec City, Quebec, Canada, 2017.
Whalen, D., Fraser, R., and MacLeod, R.: The acceleration of change – how
UAV technology is being used to better understand coastal permafrost
landscapes in the Mackenzie-Beaufort Region, NT, ArcticNet, available at:
http://www.arcticnet.ulaval.ca/pdf/media/IRIS-1-newsletter-Dec-2017.pdf
(last access: 10 May 2019), 2017.
Wobus, C., Anderson, R., Overeem, I., Matell, N., Clow, G., and Urban, F.:
Thermal erosion of a permafrost coastline: improving process-based models
using time-lapse photography, Arct. Antarct. Alp. Res., 43, 474–484,
https://doi.org/10.1657/1938-4246-43.3.474, 2011.
Short summary
Episodic changes of permafrost coastlines are poorly understood in the Arctic. By using drones, satellite images, and historic photos we surveyed a permafrost coastline on Qikiqtaruk – Herschel Island. We observed short-term coastline retreat of 14.5 m per year (2016–2017), exceeding long-term average rates of 2.2 m per year (1952–2017). Our study highlights the value of these tools to assess understudied episodic changes of eroding permafrost coastlines in the context of a warming Arctic.
Episodic changes of permafrost coastlines are poorly understood in the Arctic. By using drones,...