Articles | Volume 13, issue 5
https://doi.org/10.5194/tc-13-1423-2019
https://doi.org/10.5194/tc-13-1423-2019
Research article
 | 
08 May 2019
Research article |  | 08 May 2019

Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean

Haibo Bi, Qinghua Yang, Xi Liang, Liang Zhang, Yunhe Wang, Yu Liang, and Haijun Huang

Related authors

Reassessing seasonal sea ice predictability of the Pacific-Arctic sector using a Markov model
Yunhe Wang, Xiaojun Yuan, Haibo Bi, Mitchell Bushuk, Yu Liang, Cuihua Li, and Haijun Huang
The Cryosphere, 16, 1141–1156, https://doi.org/10.5194/tc-16-1141-2022,https://doi.org/10.5194/tc-16-1141-2022, 2022
Short summary
Contribution of warm and moist atmospheric flow to a record minimum July sea ice extent of the Arctic in 2020
Yu Liang, Haibo Bi, Haijun Huang, Ruibo Lei, Xi Liang, Bin Cheng, and Yunhe Wang
The Cryosphere, 16, 1107–1123, https://doi.org/10.5194/tc-16-1107-2022,https://doi.org/10.5194/tc-16-1107-2022, 2022
Short summary
Baffin Bay sea ice inflow and outflow: 1978–1979 to 2016–2017
Haibo Bi, Zehua Zhang, Yunhe Wang, Xiuli Xu, Yu Liang, Jue Huang, Yilin Liu, and Min Fu
The Cryosphere, 13, 1025–1042, https://doi.org/10.5194/tc-13-1025-2019,https://doi.org/10.5194/tc-13-1025-2019, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Atmospheric Interactions
Dynamic and thermodynamic processes related to sea-ice surface melt advance in the Laptev Sea and East Siberian Sea
Hongjie Liang and Wen Zhou
The Cryosphere, 18, 3559–3569, https://doi.org/10.5194/tc-18-3559-2024,https://doi.org/10.5194/tc-18-3559-2024, 2024
Short summary
Effects of Arctic sea-ice concentration on turbulent surface fluxes in four atmospheric reanalyses
Tereza Uhlíková, Timo Vihma, Alexey Yu Karpechko, and Petteri Uotila
The Cryosphere, 18, 957–976, https://doi.org/10.5194/tc-18-957-2024,https://doi.org/10.5194/tc-18-957-2024, 2024
Short summary
Attributing near-surface atmospheric trends in the Fram Strait region to regional sea ice conditions
Amelie U. Schmitt and Christof Lüpkes
The Cryosphere, 17, 3115–3136, https://doi.org/10.5194/tc-17-3115-2023,https://doi.org/10.5194/tc-17-3115-2023, 2023
Short summary
Estimating a mean transport velocity in the marginal ice zone using ice–ocean prediction systems
Graig Sutherland, Victor de Aguiar, Lars-Robert Hole, Jean Rabault, Mohammed Dabboor, and Øyvind Breivik
The Cryosphere, 16, 2103–2114, https://doi.org/10.5194/tc-16-2103-2022,https://doi.org/10.5194/tc-16-2103-2022, 2022
Short summary
Decadal changes in the leading patterns of sea level pressure in the Arctic and their impacts on the sea ice variability in boreal summer
Nakbin Choi, Kyu-Myong Kim, Young-Kwon Lim, and Myong-In Lee
The Cryosphere, 13, 3007–3021, https://doi.org/10.5194/tc-13-3007-2019,https://doi.org/10.5194/tc-13-3007-2019, 2019
Short summary

Cited articles

Alexeev, V. A., Walsh, J. E., Ivanov, V., Semenov, V. A., and Smirnov, A.: Warming in the Nordic Seas, North Atlantic Frankenstorms and thinning Arctic sea ice, Environ. Res. Lett., 12, 084011, https://doi.org/10.1088/1748-9326/aa7a1d, 2017. 
Bi, H., Sun, K., Zhou, X., Huang, H., and Xu, X.: Arctic Sea Ice Area Export Through the Fram Strait Estimated From Satellite-Based Data: 1988–2012, IEEE J. Sel. Top. Appl., 9, 3144–3157, 2016. 
Bi, H., Zhang, J., and Wang, Y.: Arctic Sea Ice Volume Changes in Terms of Age as Revealed From Satellite Observations, IEEE J. Sel. Top. Appl., 11, 1–15, 2018. 
Cavalieri, D. J. and Parkinson, C. L.: Arctic sea ice variability and trends, 1979–2010, The Cryosphere, 6, 881–889, https://doi.org/10.5194/tc-6-881-2012, 2012. 
Chen, X. and Tung, K. K.: Global surface warming enhanced by weak Atlantic overturning circulation, Nature, 559, 387–391,, 2018. 
Download
Short summary
The Arctic sea ice extent is diminishing, which is deemed an immediate response to a warmer Earth. However, quantitative estimates about the contribution due to transport and melt to the sea ice loss are still vague. This study mainly utilizes satellite observations to quantify the dynamic and thermodynamic aspects of ice loss for nearly 40 years (1979–2016). In addition, the potential impacts on ice reduction due to different atmospheric circulation pattern are highlighted.