Articles | Volume 12, issue 12
https://doi.org/10.5194/tc-12-3853-2018
https://doi.org/10.5194/tc-12-3853-2018
Brief communication
 | 
10 Dec 2018
Brief communication |  | 10 Dec 2018

Brief communication: widespread potential for seawater infiltration on Antarctic ice shelves

Sue Cook, Benjamin K. Galton-Fenzi, Stefan R. M. Ligtenberg, and Richard Coleman

Related authors

Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 2: Unsupervised learning for source process characterization
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, Sue Cook, Bernd Kulessa, and J. Paul Winberry
The Cryosphere, 18, 2081–2101, https://doi.org/10.5194/tc-18-2081-2024,https://doi.org/10.5194/tc-18-2081-2024, 2024
Short summary
The temperature change shortcut: effects of mid-experiment temperature changes on the deformation of polycrystalline ice
Lisa Craw, Adam Treverrow, Sheng Fan, Mark Peternell, Sue Cook, Felicity McCormack, and Jason Roberts
The Cryosphere, 15, 2235–2250, https://doi.org/10.5194/tc-15-2235-2021,https://doi.org/10.5194/tc-15-2235-2021, 2021
Short summary
Modelled fracture and calving on the Totten Ice Shelf
Sue Cook, Jan Åström, Thomas Zwinger, Benjamin Keith Galton-Fenzi, Jamin Stevens Greenbaum, and Richard Coleman
The Cryosphere, 12, 2401–2411, https://doi.org/10.5194/tc-12-2401-2018,https://doi.org/10.5194/tc-12-2401-2018, 2018
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 1: Event detection for cryoseismology
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, and J. Paul Winberry
The Cryosphere, 18, 2061–2079, https://doi.org/10.5194/tc-18-2061-2024,https://doi.org/10.5194/tc-18-2061-2024, 2024
Short summary
Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 2: Unsupervised learning for source process characterization
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, Sue Cook, Bernd Kulessa, and J. Paul Winberry
The Cryosphere, 18, 2081–2101, https://doi.org/10.5194/tc-18-2081-2024,https://doi.org/10.5194/tc-18-2081-2024, 2024
Short summary
Geometric amplification and suppression of ice-shelf basal melt in West Antarctica
Jan De Rydt and Kaitlin Naughten
The Cryosphere, 18, 1863–1888, https://doi.org/10.5194/tc-18-1863-2024,https://doi.org/10.5194/tc-18-1863-2024, 2024
Short summary
Alpine topography of the Gamburtsev Subglacial Mountains, Antarctica, mapped from ice sheet surface morphology
Edmund J. Lea, Stewart S. R. Jamieson, and Michael J. Bentley
The Cryosphere, 18, 1733–1751, https://doi.org/10.5194/tc-18-1733-2024,https://doi.org/10.5194/tc-18-1733-2024, 2024
Short summary
Impact of boundary conditions on the modeled thermal regime of the Antarctic ice sheet
In-Woo Park, Emilia Kyung Jin, Mathieu Morlighem, and Kang-Kun Lee
The Cryosphere, 18, 1139–1155, https://doi.org/10.5194/tc-18-1139-2024,https://doi.org/10.5194/tc-18-1139-2024, 2024
Short summary

Cited articles

Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years, The Cryosphere, 4, 77-98, https://doi.org/10.5194/tc-4-77-2010, 2010. 
Cook, S., Galton-Fenzi, B., Ligtenberg, S. R. M., and Wiltshire, K. H.: Modelled Antarctic firn depth averaged over 1979–2013 and corresponding brine zones area, PANGAEA, https://doi.org/10.1594/PANGAEA.896384, 2018. 
Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, 4th edn., Elsevier, 2010. 
DiMarzio, J. P.: GLAS/ICESat 500 m Laser Altimetry Digital Elevation Model of Antarctica, Version 1, National Snow and Ice Data Centre (NSIDC), Boulder, Colorado USA, https://doi.org/10.5067/K2IMI0L24BRJ (last access: 11 October 2018), 2007. 
Dubrovin, L. I.: Rassol v shel'fovom lednike Lazareva (Brine in the Lazarev Ice Shelf), Informatsionny Byulleten'Sovetkoj Antarkt. Ekspeditsii (Soviet Antarct. Exped. Inf. Bull.), 22, 15–16, 1960. 
Download
Short summary
When the porous compacted snow layers on an ice shelf extend below sea level, seawater is able to infiltrate onto the shelf. Here it can affect measurements of ice shelf thickness by changing the average density and affect iceberg calving if the seawater enters fractures. Seawater infiltration has only been directly observed in a few locations around Antarctica. Using continent-wide geometry and snow density data we show that it may be more widespread than previously realised.