Articles | Volume 12, issue 12
https://doi.org/10.5194/tc-12-3841-2018
https://doi.org/10.5194/tc-12-3841-2018
Research article
 | 
10 Dec 2018
Research article |  | 10 Dec 2018

A simulation of a large-scale drifting snowstorm in the turbulent boundary layer

Zhengshi Wang and Shuming Jia

Related authors

The role of a mid-air collision in drifting snow
Shuming Jia, Zhengshi Wang, and Shumin Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-113,https://doi.org/10.5194/tc-2018-113, 2018
Revised manuscript not accepted
Short summary

Related subject area

Discipline: Snow | Subject: Numerical Modelling
Microstructure-based modelling of snow mechanics: experimental evaluation of the cone penetration test
Clémence Herny, Pascal Hagenmuller, Guillaume Chambon, Isabel Peinke, and Jacques Roulle
The Cryosphere, 18, 3787–3805, https://doi.org/10.5194/tc-18-3787-2024,https://doi.org/10.5194/tc-18-3787-2024, 2024
Short summary
Snow redistribution in an intermediate-complexity snow hydrology modelling framework
Louis Quéno, Rebecca Mott, Paul Morin, Bertrand Cluzet, Giulia Mazzotti, and Tobias Jonas
The Cryosphere, 18, 3533–3557, https://doi.org/10.5194/tc-18-3533-2024,https://doi.org/10.5194/tc-18-3533-2024, 2024
Short summary
Analyzing the sensitivity of a blowing snow model (SnowPappus) to precipitation forcing, blowing snow, and spatial resolution
Ange Haddjeri, Matthieu Baron, Matthieu Lafaysse, Louis Le Toumelin, César Deschamps-Berger, Vincent Vionnet, Simon Gascoin, Matthieu Vernay, and Marie Dumont
The Cryosphere, 18, 3081–3116, https://doi.org/10.5194/tc-18-3081-2024,https://doi.org/10.5194/tc-18-3081-2024, 2024
Short summary
Regime shifts in Arctic terrestrial hydrology manifested from impacts of climate warming
Michael A. Rawlins and Ambarish V. Karmalkar
The Cryosphere, 18, 1033–1052, https://doi.org/10.5194/tc-18-1033-2024,https://doi.org/10.5194/tc-18-1033-2024, 2024
Short summary
Exploring the decision-making process in model development: focus on the Arctic snowpack
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
EGUsphere, https://doi.org/10.5194/egusphere-2023-2926,https://doi.org/10.5194/egusphere-2023-2926, 2024
Short summary

Cited articles

Bintanja, R.: Snowdrift suspension and atmospheric turbulence. Part I: Theoretical background and model description, Bound.-Lay. Meteorol., 95, 343–368, 2000. 
Bintanja, R.: Characteristics of snowdrift over a bare ice surface in Antarctica, J. Geophys. Res.-Atmos., 106, 9653–9659, 2001. 
Budd, W. F.: The Byrd snow drift project : outline and basic results, American Geophysical Union, Washington, D.C., 71–134, 1966. 
Carneiro, M. V., Araújo, N. A., Pähtz, T., and Herrmann, H. J.: Midair collisions enhance saltation, Phys. Rev. Lett., 111, 058001, https://doi.org/10.1103/PhysRevLett.111.058001, 2013. 
Cess, R. D. and Yagai, I.: Interpretation of Snow-Climate Feedback as Produced by 17 General Circulation Models, Science, 253, 888–892, 1991. 
Download
Short summary
Drifting snowstorms that are hundreds of meters in depth are reproduced using a large-eddy simulation model combined with a Lagrangian particle tracking method, which also exhibits obvious spatial structures following large-scale turbulent vortexes. The horizontal snow transport flux at high altitude, previously not observed, actually occupies a significant proportion of the total flux. Thus, previous models may largely underestimate the total mass flux and consequently snow sublimation.