Articles | Volume 12, issue 12
The Cryosphere, 12, 3841–3851, 2018
The Cryosphere, 12, 3841–3851, 2018

Research article 10 Dec 2018

Research article | 10 Dec 2018

A simulation of a large-scale drifting snowstorm in the turbulent boundary layer

Zhengshi Wang and Shuming Jia

Related authors

The role of a mid-air collision in drifting snow
Shuming Jia, Zhengshi Wang, and Shumin Li
The Cryosphere Discuss.,,, 2018
Revised manuscript not accepted
Short summary

Related subject area

Discipline: Snow | Subject: Numerical Modelling
Snow cover duration trends observed at sites and predicted by multiple models
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698,,, 2020
Short summary
Deep ice layer formation in an alpine snowpack: monitoring and modeling
Louis Quéno, Charles Fierz, Alec van Herwijnen, Dylan Longridge, and Nander Wever
The Cryosphere, 14, 3449–3464,,, 2020
Short summary
Multi-physics ensemble snow modelling in the western Himalaya
David M. W. Pritchard, Nathan Forsythe, Greg O'Donnell, Hayley J. Fowler, and Nick Rutter
The Cryosphere, 14, 1225–1244,,, 2020
Short summary
Micromechanical modeling of snow failure
Grégoire Bobillier, Bastian Bergfeld, Achille Capelli, Jürg Dual, Johan Gaume, Alec van Herwijnen, and Jürg Schweizer
The Cryosphere, 14, 39–49,,, 2020
Changing characteristics of runoff and freshwater export from watersheds draining northern Alaska
Michael A. Rawlins, Lei Cai, Svetlana L. Stuefer, and Dmitry Nicolsky
The Cryosphere, 13, 3337–3352,,, 2019
Short summary

Cited articles

Bintanja, R.: Snowdrift suspension and atmospheric turbulence. Part I: Theoretical background and model description, Bound.-Lay. Meteorol., 95, 343–368, 2000. 
Bintanja, R.: Characteristics of snowdrift over a bare ice surface in Antarctica, J. Geophys. Res.-Atmos., 106, 9653–9659, 2001. 
Budd, W. F.: The Byrd snow drift project : outline and basic results, American Geophysical Union, Washington, D.C., 71–134, 1966. 
Carneiro, M. V., Araújo, N. A., Pähtz, T., and Herrmann, H. J.: Midair collisions enhance saltation, Phys. Rev. Lett., 111, 058001,, 2013. 
Cess, R. D. and Yagai, I.: Interpretation of Snow-Climate Feedback as Produced by 17 General Circulation Models, Science, 253, 888–892, 1991. 
Short summary
Drifting snowstorms that are hundreds of meters in depth are reproduced using a large-eddy simulation model combined with a Lagrangian particle tracking method, which also exhibits obvious spatial structures following large-scale turbulent vortexes. The horizontal snow transport flux at high altitude, previously not observed, actually occupies a significant proportion of the total flux. Thus, previous models may largely underestimate the total mass flux and consequently snow sublimation.