Articles | Volume 12, issue 1
https://doi.org/10.5194/tc-12-343-2018
https://doi.org/10.5194/tc-12-343-2018
Research article
 | 
26 Jan 2018
Research article |  | 26 Jan 2018

Estimation of degree of sea ice ridging based on dual-polarized C-band SAR data

Alexandru Gegiuc, Markku Similä, Juha Karvonen, Mikko Lensu, Marko Mäkynen, and Jouni Vainio

Related authors

Visual Interpretation of Synthetic Aperture Radar Sea Ice Imagery by Expert and Novice Analysts: An Eye Tracking Study
Alexandru Gegiuc, Juha Karvonen, Jouni Vainio, Eero Rinne, Roman Bednarik, and Marko Mäkynen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-8,https://doi.org/10.5194/tc-2022-8, 2022
Publication in TC not foreseen
Short summary

Related subject area

Remote Sensing
Radar-equivalent snowpack: reducing the number of snow layers while retaining their microwave properties and bulk snow mass
Julien Meloche, Nicolas R. Leroux, Benoit Montpetit, Vincent Vionnet, and Chris Derksen
The Cryosphere, 19, 2949–2962, https://doi.org/10.5194/tc-19-2949-2025,https://doi.org/10.5194/tc-19-2949-2025, 2025
Short summary
New radar altimetry datasets of Greenland and Antarctic surface elevation, 1991–2012
Maya Raghunath Suryawanshi, Malcolm McMillan, Jennifer Maddalena, Fanny Piras, Jérémie Aublanc, Jean-Alexis Daguzé, Clara Grau, and Qi Huang
The Cryosphere, 19, 2855–2880, https://doi.org/10.5194/tc-19-2855-2025,https://doi.org/10.5194/tc-19-2855-2025, 2025
Short summary
Evaluating sensitivity of optical snow grain size retrievals to radiative transfer models, shape parameters, and inversion techniques
James W. Dillon, Christopher P. Donahue, Evan N. Schehrer, and Kevin D. Hammonds
The Cryosphere, 19, 2913–2933, https://doi.org/10.5194/tc-19-2913-2025,https://doi.org/10.5194/tc-19-2913-2025, 2025
Short summary
Detection and reconstruction of rock glacier kinematics over 24 years (2000–2024) from Landsat imagery
Diego Cusicanqui, Pascal Lacroix, Xavier Bodin, Benjamin Aubrey Robson, Andreas Kääb, and Shelley MacDonell
The Cryosphere, 19, 2559–2581, https://doi.org/10.5194/tc-19-2559-2025,https://doi.org/10.5194/tc-19-2559-2025, 2025
Short summary
Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Christopher J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
The Cryosphere, 19, 2315–2320, https://doi.org/10.5194/tc-19-2315-2025,https://doi.org/10.5194/tc-19-2315-2025, 2025
Short summary

Cited articles

Barale, V. and Gade, M. (Eds.): Remote Sensing of the European Seas, Springer Science + Business Media B.V., ISBN-13:978-1402067716, 2008.
Barber, D. G. and LeDrew, E. F.: SAR sea ice discrimination using texture statistics: A multivariate approach, Photogramm. Eng. Rem. S, 57, 385–395, 1991.
Beitsch, A., Kaleschke, L., and Kern, S.: Investigating High-Resolution AMSR2 Sea Ice Concentrations during the February 2013 Fracture Event in the Beaufort Sea, Remote Sens., 6, 3841–3856, 2014.
Berthod, M., Kato, Z., Yu, S., and Zerubia, J.: Bayesian image classification using Markov random fields, Image and Vision Comput., 14, 285–295, 1996.
Besag, J.: Spatial interaction and the statistical analysis of lattice systems, J. R. Stat. Soc. B, 36, 192–236, 1974.
Download
Short summary
The paper demonstrates the use of SAR imagery in retrieving ice-ridging information for navigation. Based on image segmentation and several texture features extracted from SAR, we perform a classification into four ridging categories from level ice to heavily ridged ice. We compare our results with the manually drawn ice charts over the Baltic Sea. We conclude that the SAR-based product is more detailed than FIS and can be used by ships (non-icebreakers) to aid independent navigation.
Share