Articles | Volume 12, issue 1
https://doi.org/10.5194/tc-12-343-2018
https://doi.org/10.5194/tc-12-343-2018
Research article
 | 
26 Jan 2018
Research article |  | 26 Jan 2018

Estimation of degree of sea ice ridging based on dual-polarized C-band SAR data

Alexandru Gegiuc, Markku Similä, Juha Karvonen, Mikko Lensu, Marko Mäkynen, and Jouni Vainio

Related authors

Visual Interpretation of Synthetic Aperture Radar Sea Ice Imagery by Expert and Novice Analysts: An Eye Tracking Study
Alexandru Gegiuc, Juha Karvonen, Jouni Vainio, Eero Rinne, Roman Bednarik, and Marko Mäkynen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-8,https://doi.org/10.5194/tc-2022-8, 2022
Publication in TC not foreseen
Short summary

Related subject area

Remote Sensing
Benchmarking passive-microwave-satellite-derived freeze–thaw datasets
Annett Bartsch, Xaver Muri, Markus Hetzenecker, Kimmo Rautiainen, Helena Bergstedt, Jan Wuite, Thomas Nagler, and Dmitry Nicolsky
The Cryosphere, 19, 459–483, https://doi.org/10.5194/tc-19-459-2025,https://doi.org/10.5194/tc-19-459-2025, 2025
Short summary
Snow depth estimation on leadless landfast ice using Cryo2Ice satellite observations
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
The Cryosphere, 19, 325–346, https://doi.org/10.5194/tc-19-325-2025,https://doi.org/10.5194/tc-19-325-2025, 2025
Short summary
Five decades of Abramov glacier dynamics reconstructed with multi-sensor optical remote sensing
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
The Cryosphere, 19, 219–247, https://doi.org/10.5194/tc-19-219-2025,https://doi.org/10.5194/tc-19-219-2025, 2025
Short summary
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Machine learning of Antarctic firn density by combining radiometer and scatterometer remote-sensing data
Weiran Li, Sanne B. M. Veldhuijsen, and Stef Lhermitte
The Cryosphere, 19, 37–61, https://doi.org/10.5194/tc-19-37-2025,https://doi.org/10.5194/tc-19-37-2025, 2025
Short summary

Cited articles

Barale, V. and Gade, M. (Eds.): Remote Sensing of the European Seas, Springer Science + Business Media B.V., ISBN-13:978-1402067716, 2008.
Barber, D. G. and LeDrew, E. F.: SAR sea ice discrimination using texture statistics: A multivariate approach, Photogramm. Eng. Rem. S, 57, 385–395, 1991.
Beitsch, A., Kaleschke, L., and Kern, S.: Investigating High-Resolution AMSR2 Sea Ice Concentrations during the February 2013 Fracture Event in the Beaufort Sea, Remote Sens., 6, 3841–3856, 2014.
Berthod, M., Kato, Z., Yu, S., and Zerubia, J.: Bayesian image classification using Markov random fields, Image and Vision Comput., 14, 285–295, 1996.
Besag, J.: Spatial interaction and the statistical analysis of lattice systems, J. R. Stat. Soc. B, 36, 192–236, 1974.
Download
Short summary
The paper demonstrates the use of SAR imagery in retrieving ice-ridging information for navigation. Based on image segmentation and several texture features extracted from SAR, we perform a classification into four ridging categories from level ice to heavily ridged ice. We compare our results with the manually drawn ice charts over the Baltic Sea. We conclude that the SAR-based product is more detailed than FIS and can be used by ships (non-icebreakers) to aid independent navigation.
Share