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Abstract. For ship navigation in the Baltic Sea ice, param-
eters such as ice edge, ice concentration, ice thickness and
degree of ridging are usually reported daily in manually pre-
pared ice charts. These charts provide icebreakers with essen-
tial information for route optimization and fuel calculations.
However, manual ice charting requires long analysis times,
and detailed analysis of large areas (e.g. Arctic Ocean) is not
feasible. Here, we propose a method for automatic estimation
of the degree of ice ridging in the Baltic Sea region, based
on RADARSAT-2 C-band dual-polarized (HH/HV channels)
SAR texture features and sea ice concentration information
extracted from Finnish ice charts. The SAR images were
first segmented and then several texture features were ex-
tracted for each segment. Using the random forest method,
we classified them into four classes of ridging intensity and
compared them to the reference data extracted from the digi-
tized ice charts. The overall agreement between the ice-chart-
based degree of ice ridging and the automated results varied
monthly, being 83, 63 and 81 % in January, February and
March 2013, respectively. The correspondence between the
degree of ice ridging reported in the ice charts and the ac-
tual ridge density was validated with data collected during a
field campaign in March 2011. In principle the method can
be applied to the seasonal sea ice regime in the Arctic Ocean.

1 Introduction

Navigation in sea ice is hampered by rapid changes in the
sea ice conditions. Thus, it is essential for wintertime ship-
ping and offshore operations to get reliable and up-to-date
information on the prevailing ice conditions. The most im-
portant sea ice parameters are the location of the ice edge, ice

types, ice thickness, concentration and the amount of ridged
ice. Without detailed sea ice information, navigating through
heavily ridged sea ice is difficult or even impossible.

The Baltic Sea is a semi-enclosed brackish sea water basin
in northern Europe. The ice cover in the Baltic Sea usually
begins to form in November and has its largest extent be-
tween January and March (Seinä and Peltola, 1991). The
normal melting season starts in April, and the ice melts com-
pletely by the beginning of June. The maximum annual ice
extent ranges from 12 to 100 % of the whole Baltic Sea area
with an average of 40 % (Seinä and Palosuo, 1996). Over the
last decades a clear decreasing trend can be seen in the max-
imum ice extent, although the trend has not yet been subject
to a detailed investigation. The sea ice edge is used as a pa-
rameter of sea ice defining the boundary between the open
water and the sea ice area. Here the ice concentration areas
higher than 25 % belong to sea ice, and below they belong
to open-water. The sea ice in the Baltic Sea can be divided
into fast ice and drift ice. Fast ice appears in the coastal and
archipelago areas. Drift ice has a dynamic nature due to forc-
ing by winds and currents, which results in an uneven broken
ice field with distinct floes, leads and cracks, brash ice bar-
riers, rafted ice and ice ridges. The upper limit for thermo-
dynamically grown ice in the drift ice zone is 70 cm or less
during most winters (Palosuo et al., 1982), while the keel
depth of ice ridges is typically 5 to 15 m (Leppäranta and
Hakala, 1992). The salinity of the Baltic Sea ice is typically
only from 0.2 to 2 ‰ depending on the location, time and
weather history (Hallikainen, 1992). The low salinity level
affects the radar signal response from satellite imagery, re-
sulting in more volume and less surface scattering of the in-
cident signal.
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Figure 1. Example of RS-2 dual polarized SAR image mosaic (a: HH, b: HV) over the Baltic Sea on 15 March 2013 and the corresponding
DIR chart (c) showing the manually drawn polygons of different degrees of ice ridging, including the marginal ice zone detection mask based
on the ice concentration values between 25 and 80 % and open-water mask based on the ice concentration values smaller than 25 %.

Synthetic aperture radar (SAR) satellites such as
RADARSAT-2 (RS-2) and Sentinel-1 (S-1) play a major role
in operationally monitoring the ice conditions in the Baltic
Sea. SAR imaging is practically independent of the atmo-
sphere conditions (e.g. cloud cover) and solar illumination
and therefore suitable for operative sea ice monitoring. How-
ever, as backscatter information in SAR imagery cannot eas-
ily be linked to the different ice types, the expertise of an
trained ice analyst is usually required.

In the Baltic Sea, daily ice charts prepared by the Finnish
Ice Service (FIS) analysts provide a daily source of informa-
tion on the ice conditions. The charts divide the ice cover into
polygons to which ice types and properties are assigned. The
analysis is based on a visual interpretation of the SAR im-
agery as the principal source of ice information. Currently,
RS-2 and S-1 C-band SAR imagery with a wide coverage
(e.g. RS-2 ScanSAR Wide Mode with 500 by 500 km image
size) are used. The SAR imagery is complemented by visible
and thermal infrared imagery, e.g. from Moderate Resolution
Imaging Spectroradiometer (MODIS), in situ observations,
sea ice information messages from icebreakers and data from
sea ice models. The ice chart polygons defined by the ice
analysts represent ice areas with similar ice characteristics.
Parameters assigned to each polygon are ice concentration,
average level-ice thickness, maximum and minimum level-
ice thickness and the degree of ice ridging (DIR) which is a
numeral classifying the ice into five categories, as explained
in Sect. 2.3. The FIS ice analysts estimate the DIR values
mainly using SAR imagery and with additional information
on the ice drift based on successive SAR images and results
of sea ice models. The main criteria for the visual DIR es-
timation from the SAR imagery are the SAR backscattering
and its visible patterns (SAR texture) (see Fig. 1).

Typically, the ice situation changes little from one day to
the next. Hence, when drawing a new ice chart, the ice an-
alysts use the latest chart as the basis for the new one and
only adjust the polygon contours and their assigned DIR val-
ues to match the new ice situation. This procedure speeds up
the process of ice charting but may also introduce a bias if
old polygons are used. The quality of the displayed SAR fea-
tures of sea ice (e.g. magnitude of contrast/intensity, amount
of radar noise), the analyst’s experience and their style of
drawing (more detailed or less detailed) can contribute fur-
ther to inconsistencies in the finalized ice chart.

In this paper we propose a method to automatize the DIR
estimation process based on RS-2 dual-polarized (HH/HV)
SAR data acquired under cold conditions and using the FIS
ice charts as reference data. The results are then evaluated to-
gether with the ice analysts. We do not expect a perfect match
between the automatic chart and the manual one. The poly-
gons in the manual charts suppress variation for the small-
scale features and merge them into one DIR category. Here
we aim to produce a more detailed DIR chart, which closely
follows the SAR texture features of sea ice ridges, edges,
cracks and leads. This would allow the icebreakers and non-
icebreaker vessels to benefit from it in advance route plan-
ning and optimization, by taking advantage of the sea ice
passages within ridged-ice areas. Manual ice charting should
also benefit from a more detailed and automated DIR map
which can serve as a basic layer for the final ice chart.

In Sect. 2.3 we will describe the different DIR categories
used by FIS. As a tool in the DIR classification we use the
random forest (RF) algorithm, which will be explained in de-
tail in Sect. 3.3. Using the automated classification procedure
we target an efficient exploitation of SAR data and, by means
of increased spatial and temporal resolutions, an improved
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quality (pixel level accuracy and consistency between differ-
ent analysts) of the ice charts.

2 Data sets and processing

Our study area in the Baltic Sea is north of the latitude of
61◦ N, covering the entire Bay of Bothnia and most of the
Sea of Bothnia. The time period is the ice season 2012–
2013. The most severe ice conditions in 2012–2013 in the
Baltic Sea occurred in our study area. The ice season 2012–
2013 was average but the turning point of the winter was
late. The weather began to cool during the first week of Jan-
uary and the ice extent increased. In the last week of January
the strong winds moved the ice fields and the mild weather
melted the ice. At the beginning of February the weather re-
mained similar – at night new ice was formed and then bro-
ken by winds during the day. Towards the end of February the
weather cooled down and new ice also formed in the Gulf of
Finland. At the beginning of March cold arctic air started to
flow to Scandinavia and the extent of ice began to grow. The
whole of March was extremely cold. The 15 March ice extent
reached 177 000 km2, which was the maximum of the season.
From then on, the cold nights formed new ice but sunny days
melted it, and the ice extent did not increase further.

2.1 σ o of the Baltic Sea ice

In the following we discuss how in general the C-band
backscattering coefficient (σ o) of the Baltic Sea ice is related
to the sea ice properties and especially sea ice ridging. Un-
der cold weather conditions when the snow cover on sea ice
is dry the ice surface scattering has been observed to be the
dominant component in the total co-polarized σ o at incidence
angles below 45◦ (Carlström and Ulander, 1993; Dierking
et al., 1999). If the ice surface is very smooth and salinity
< 0.5 psu, which typically is the case for level fast ice in the
Baltic Sea, then the backscattering from the ice–water inter-
face and ice volume is significant. The surface backscatter-
ing from level ice is controlled by the statistics of the small-
scale roughness as well as the salinity of the ice surface. If
sea ice is ridged, the large-scale surface roughness alters the
geometry of the surface and, hence, also modifies σ o. Em-
pirical measurements of the Baltic Sea ice C-band σ o have
shown that the variation in the large-scale surface roughness
mostly modulates σ o and image texture, although changes
in the small-scale roughness are also significant (Carlström
and Ulander, 1993; Dierking et al., 1999; Mäkynen and Hal-
likainen, 2004).

The σ o contrast between level ice and ridged ice is
on average larger at C-band cross-polarization than at co-
polarization (Mäkynen and Hallikainen, 2004). The standard
deviation of σ o was observed to be larger for ridged-ice types
(mixtures of level ice, ice ridges, rubble) than for level-ice
types and brash ice in Mäkynen and Hallikainen (2004). The

C-band σ o is not directly related to the sea ice thickness,
but at least in the Baltic Sea it is possible to estimate the
thickness of ridged ice under dry snow conditions through a
statistical relationship between ice freeboard, level-ice thick-
ness and σ o (Similä et al., 2010). The variance of the mean
freeboard, i.e. large-scale surface roughness, increases with
increasing average freeboard, and as the surface roughness
increases σ o also typically increases. In general, these pre-
vious studies on sea ice σ o signatures show that there is a
relation between C-band σ o and DIR, but further studies are
needed to better quantify this relation.

Next, different approaches for SAR-based sea ice classi-
fication are briefly reviewed. Many SAR-imagery-based sea
ice classification systems just perform classification to open
water and different ice types, such as new ice, first-year-ice,
multi-year-ice, but DIR is not explicitly estimated in more
detail. Classification schemes utilizing σ o and SAR texture
have been presented, e.g. in Soh et al. (2004); Sandven
et al. (2012); Barber and LeDrew (1991) and Clausi (2001).
Classification of ice types based on single-polarization C-
band SAR backscattering has been studied, e.g. in Karvonen
(2004) and Shokr (2009). Sea ice SAR classification using
the world meteorological organization (WMO) ice categories
(stage of development) (WMO, 2010) has been studied, e.g.
in Clausi (2001); Deng and Clausi (2005); Maillard et al.
(2005); Yu and Clausi (2007); Clausi et al. (2010); Ochilov
and Clausi (2012). These approaches are based on the SAR
segmentation and different SAR features, including texture
ones. Some of the methods also combine the ice analyst anal-
ysis and an automated analysis. A system capable of a semi-
automated segmentation and enhanced classification with a
digitized ice chart as input is presented in Clausi et al. (2010).
It is noted that the ice categories in these studies do not either
explicitly or uniquely include DIR classification.

2.2 RADARSAT-2 SAR imagery

The SAR imagery used in this study is RADARSAT-2
ScanSAR Wide (SCWA) dual-polarized imagery with the
HH/HV polarization combination. The nominal size of an
RS-2 SCWA image is around 500 by 500 km, and the pixel
size is 50 m. The spatial resolution is around 73–163 m by
100 m (range by azimuth). The incidence angle (θ0) varies
from 20 to 49◦. The equivalent number of looks (ENL) is
larger than six. The nominal noise floor equivalent σ o at both
HH- and HV-polarization varies along the across-track direc-
tion as −28.5± 2.5 dB and the absolute accuracy of σ o is
better than 1 dB (MDA, 2014).

The acquired RS-2 SAR imagery covered the whole of the
Baltic Sea. The number of SAR images used in the daily
SAR mosaic over the test area varied from one to three SAR
frames per day from January to March in 2013. On some days
the SAR mosaic was updated twice. We selected from these
SAR mosaics the training and the test data using the rule that
the time gap between a training and a test mosaic must be at
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least 3 days to avoid situations in which the same SAR scene
would appear both in the test and the training data set. Hence
the training data consisted of five mosaics from January, four
mosaics from February and four mosaics from March. The
test data consisted of four mosaics from January, six mosaics
from February and three mosaics from March. Some mosaics
were not used due to the time constraint. The monthly train-
ing and test data refers to the mosaics gathered during the
same month. We selected these 3 months for the develop-
ment and the test work because then the SAR images were
mostly acquired under dry snow conditions. Hence, the dom-
inant backscattering source was the sea ice surface and we
could expect a statistical relationship between σ o and DIR
as reported in Carlström and Ulander (1995); Dierking et al.
(1999); Similä et al. (2001, 2010); Mäkynen and Hallikainen
(2004).

The preprocessing of the RS-2 SCWA images consisted
of calibration (calculation of σ o

HH and σ o
HV), georectifica-

tion, calculation of the incidence angle θ0 and land masking.
First the data were rectified into the Mercator projection with
100 m pixel size. This georectification is compatible with the
FIS ice charts and the navigation system of the Finnish and
Swedish icebreakers. In this Mercator projection the refer-
ence latitude is 61◦40′ N.

As the SAR σ o is dependent on θ0, an incidence angle
correction is necessary before the classification of the SAR
images with wide θ0 range, such as RS-2 SCWA images. For
the HH-polarization images, an incidence angle correction
method described in Mäkynen et al. (2002) was applied. This
incidence angle correction maps the σ o values using a linear
dependence for the σ o in dB-scale to a predefined θ0 value
θR0 . In this case, the fixed θR0 of 30◦ was used.

At the HV-polarization the SAR σ o values are close to
the instrument noise floor (around−28.5 dB for RS-2 SCWA
mode). The noise floor modulates the (low) HV channel sig-
nal leading to clearly visible stripes (artefacts) in the HV
imagery. These stripes complicate both the visual and au-
tomated interpretation of the SAR imagery. The HV chan-
nel incidence angle dependence and varying noise floor in
the range direction are corrected based on a statistical inci-
dence angle dependence computed for a large number (65)
of RS-2 ScanSAR Wide images. Then the incidence angle
range is quantized into N bins of 0.01◦ (θ1, . . .,θN ) covering
the whole incidence angle range. We average the σ o values
from all the 65 images for each θi . We denote this average
by σ o(θ). Together these average values create a σ o curve
Z(θ ) as a function of the incidence angle over the whole in-
cidence angle range. We consider that each σ o(θ) consists
of the sum of the average σ o, the associated noise floor and
the σ o decay as a function of the incidence angle. As we av-
erage a large number of values representing different targets
for each theta bin, we assume the σ o average to be similar for
each bin (i.e. constant over the whole incidence angle range),
and then Z(θ ) also presents a sum of the constant value, the
noise floor as a function of theta and σ o decay as a func-

tion of theta. To minimize the effect of the constant value
on the correction we then take the mean of all Z(θ ) values
over the whole range of theta. We denote this mean by Z.
Then the whole Z(θ ) curve is made a zero mean signal by
subtracting Z from Z(θ ); this zero mean function is denoted
by Z(θ). The incidence angle corrected backscattering coef-
ficient σ o

HVcorrected
(r,c) is now obtained from each calibrated

pixel at σ o(r,c) value: σ o
HVcorrected

(r,c) = σ o(r,c)−Z(θ(r,c)),
where (r,c) are the row and column coordinates of the image
grid and θ(r,c) is the corresponding incidence angle. This
correction was proposed in Karvonen (2015).

The equivalent number of looks (ENL), noise equivalent
σ o and autocorrelation between neighbouring pixels in the
rectified images were studied using homogeneous areas of
3.1× 3.1 km visually selected from the images over open
water areas with a weak texture. The ENL was around 9.5
for the whole θo range. Thus, the radiometric resolution was
around 1.2 dB and the standard deviation (SD) of fading was
1.4 dB. The autocorrelation coefficient between the adjacent
100 m pixels was on average only 0.18. The land masking
was based on the GSHHG (Global Self-consistent Hierarchi-
cal, High-resolution Geography database from the National
Oceanic and Atmospheric Administration, NOAA) coastline
data (Wessel and Smith, 1996).

Next, the SAR images were segmented, and the segment-
wise features were calculated at a resolution of 100 m; for
details see Sect. 3.1 and 3.2. Due to the large size of the SAR
images and also the feature images they were downsampled
to 500 m resolution. Finally, the daily SAR image and feature
mosaics were constructed by overlaying all of the SAR data
available for each day; i.e. the latest data are shown in the
mosaic. The study area was typically fully covered by RS-2
SAR imagery every 1 to 2 days.

2.3 Ice charts and degree of ridging

Our reference data set consists of the daily FIS manual ice
charts over the Baltic Sea. In the ice charts the degree of
ice ridging (DIR) is used to classify sea ice in a way that
is relevant for the difficulty of navigation. DIR is manually
assigned as a qualitative numeral, ranging from 1 to 6, to
each ice chart polygon. The six DIR categories used in the
operational ice charting in the Baltic Sea relate to the ridge
density variation in an area. The categories are visually iden-
tified through changes both in the σ o response as well as in
textural characteristics in SAR imagery. Their interpretation
is validated through field measurements provided by several
operating icebreakers. The task of assigning a DIR value to
each ice chart polygon is a complex process requiring a good
understanding of the history of the current winter season,
i.e. monitoring of changes in the pack ice zone and utiliz-
ing the continuous reports on ice conditions provided by the
icebreakers. In our study, we only define four DIR categories
by combining the brash ice barriers (WMO, 2010) and the
heavily ridged-ice category. The brash ice barriers covered
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a very small fraction of the sea ice area, so that they could
not have been treated as a distinct category for classification.
The very heavily ridged-ice field category was not present in
our data set. The four DIR categories used in this study are
defined as follows.

The level-ice area is indicated as DIR 1, which usually
looks homogenous and smooth in the SAR imagery with low
σ o response. This category also includes slightly rafted ice.
The slightly ridged-ice category including heavily rafted ice
areas is marked as DIR 2. The ridged and heavily ridged-ice
areas corresponding to the DIR 3 and 4 are recognized by
the changes in surface roughness at a larger scale, resulting
in higher σ o values. As their formation depends on ice pres-
sure, knowledge of the earlier ice and weather conditions is
required. The DIR 4 category in our data set included the few
occurrences of brash ice barriers.

By visual inspection of the RS-2 and S-1 SAR wide swath
imagery with a spatial resolution of approximately 100 m it
is not possible to describe the ridging intensity quantitatively.
However, it is feasible to assign categories of ridged ice to
extended areas for which the actual ridging intensities differ.
For justification of the meaningfulness of the areal DIR val-
ues see our comparison with the 2011 field campaign data set
in Sect. 4.1.

The ice charts are saved as numerical grids from the ice-
charting software with a resolution of approximately 1 nau-
tical mile (NM). In the grid format the ice thickness, ice con-
centration and DIR value assigned to each ice chart poly-
gon are included. The size of a polygon is usually several
hundreds of square kilometres. Additionally, the sea surface
temperature is included in the ice chart grids. This prac-
tice slightly differs from the ice classes defined by the ice-
charting guidelines in the Canadian Ice Service, MANICE
(2005), in which the ice is classified based on the stage of
development and indicated by the so-called WMO egg codes
(WMO, 2010).

2.4 Surface and thickness profile data on ridged ice

No long-term studies between ice chart DIR and the actual
ridging statistics have been published, although field cam-
paigns to measure ridging in the Bay of Bothnia started in
the late 1970s. The first campaigns used ship-borne laser pro-
filers and the first extensive airborne laser profiler campaign
was conducted in 1988 (Lewis et al., 1993). To compare DIR
categories in the FIS charts with actual ridging we utilize data
collected during helicopter-borne profiling campaigns in the
Bay of Bothnia. The main data set is from the March 2011
campaign with approximately 600 km of measurement lines
by a helicopter-borne electromagnetic (HEM) sensor which
combines laser surface profiling and inductive distance mea-
surement to the ice–water interface. The measurement sys-
tem was similar to that described by Haas et al. (2009). The
HEM measurements given as a comprehensive understand-
ing on ridging are obtainable from linear profiles (see Fig. 2).

The two profiles provide the total thickness, and the surface
laser profile resolves ridge sails. The measurement spacing
of the HEM instrument is 3–4 m, while the measurement re-
sponse is obtained from a footprint which is typically 50 m.
Standard inversion of the EM response assumes that the ice
has uniform thickness and zero conductivity under the foot-
print. Neither holds for the roughly triangular ridge keels as
their porous lower parts are permeable to electric currents.
This results in an underestimation of keel depths with 50 %
or even more (Pfaffhuber et al., 2012) and also in an under-
estimation of the total volume of ice.

The ice season 2010–2011 was severe, with a maximum
ice extent of 309 000 km2. In the mid-basin of the Bay of
Bothnia, the level-ice thickness reached 60 cm with some-
what decreased ridging compared to the average winter with
similar wind conditions.

To provide interannual variation for the HEM-campaign-
based results of Sect. 4.1, we use data from the 1988 cam-
paign and from three other campaigns in 1993, 1994 and
1997, summarized in Lensu (2003). The 1993 campaign was
carried out in February and the others in March. They mea-
sured in total 1600 km of surface profiles. The 1988 cam-
paign covers the whole of the Bay of Bothnia and the 1994
campaign covers it in the S–N direction, while the 1993 and
1997 campaigns cover the NE quadrant of the basin. From
the profile data, ridge sails are selected with the Rayleigh
criterion: to include the shallower one of two adjacent sails
its height must be at least twice the minimum elevation be-
tween the sails. In addition, a cut-off height is imposed. From
the sail data the variation in ridge density or the number of
ridge sails per kilometre, and sail height can be determined.
The ridge densities were 6.4, 7.3, 5.3 and 26.7 per kilome-
tre for the 88, 93, 94 and 97 campaigns. The sail height
shows less variation, from 0.58 to 0.66 m. The densities are
affected mostly by the number of days with strong winds
during the earlier stages of the season when ice is less resis-
tant to the deformation. The threshold wind speed for the on-
set of deformation is usually 14–16 m s−1. The average val-
ues obscure the large regional variance in ridge density. It
typically increases when moving northwards and eastwards.
Coastal ridge fields are often created by the closing of re-
frozen coastal leads and can be continuous rubble fields with
densities of up to 100 per kilometre. Sail height depends on
the average ice thickness of the basin. Also, the presence of
snow reduces the heights in the profile data with values equal
to the snow thickness. However, as a first approximation, the
average height of sails exceeding 0.4 m can be assumed to
be 0.6 m in the Bay of Bothnia. In the interpretation of the
profile data it must be taken into account that a considerable
fraction of ridges fall below the cut-off. Moreover, the sail
heights are sampled from random crossings and also include
shallower sections of the sails. In situ field measurements
usually select the highest point of the sail and the observed
heights are typically 1–3 m and drilled keel depths of 5–15 m
(Kankaanpää, 1997).
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Figure 2. A 20 km section of combined surface laser profile and EM thickness profile, and the corresponding ice thickness histogram for
the 2011 field campaign data. The laser profile resolves all ridge sails, while the EM profile averages thickness over an altitude-dependent
footprint, typically 50 m.

2.5 Correspondence between ice charts and SAR
mosaics

For a correct classification of the SAR texture features of sea
ice, they need to be consistent with the degree of ridging val-
ues assigned for each class in the ice chart for the whole train-
ing data set. This consistency, however, cannot be assured by
the current ice-charting process for two main reasons. Firstly,
the SAR data scenes are not always acquired over the area of
interest in time for the ice charting (Rinne and Similä, 2016).
This results in the ice analysts’ requirement to extract ice in-
formation from other available sources, typically consisting
of optical sensors (e.g. MODIS), in situ measurements or ob-
servations (e.g. icebreakers). Secondly, the degree of ice ridg-
ing is divided into four severity classes. These ridging cate-
gories are not always clearly separated; thus in many cases
they can be mixed.

To minimize the subjective bias and maximize the consis-
tency between the texture features present in the daily SAR
mosaics and the allocated ridging class in the correspond-
ing ice charts, we used only those SAR–chart pairs which
agree with each other on a daily basis to a decent degree and
rejected all others. This was performed by examining every
DIR chart during the whole test period from 1 January to
31 March 2013 and comparing it visually to the correspond-
ing SAR mosaic. Visually comparing the sea ice texture fea-
tures in SAR imagery and evaluating their correspondence to
the correct ice class in the FIS charts is not a straightforward
task when performed by a non-trained analyst. However, af-
ter inspecting several pairs visually and discussing them with
the ice analysts, the comparison was much easier and there
were several cases in which at least one major disagreement
was found. Some of these disagreements arose and were con-
firmed to have appeared from the lack of fresh SAR imagery
at the time of ice charting. In some other cases, the disagree-
ments were clearly visible. If the DIR values assigned in
the ice chart for a specific SAR texture region were consis-
tent on multiple occasions, the exception pair was eliminated

because it was considered inadequate for the classification.
An example of the data selection procedure is presented in
Fig. 3, in which we show two SAR–chart pairs from 9 to
12 March 2013 over the Bay of Bothnia and the northern
part of the Bothnian Sea. Here, the two daily SAR mosaics
show visually similar texture features with very small differ-
ences. In spite of that, the corresponding DIR charts show a
change in class from slightly ridged ice of class 2 on 9 March
to level ice of class 1 on 12 March, along the west coast near
the fast-ice region. For ship navigation, the low ice ridging
classes (DIR 1 and 2) do not likely pose any real concern.
Therefore, if they are assigned differently on different days,
the shipping is not affected much. On the other hand, for the
automatic classifier this is a confusing case that leads to a
decrease in discrimination power between the two ridging
categories. A similar effect can be seen in the more central
to southern part of the Bay of Bothnia, where the heavily
ridged ice of class 4 on 9 March has changed to class 2 on
12 March. In this case, we have accepted only the data pair
from 12 March as a good pair, because it was found more
consistent with the classification from multiple days (i.e. 13,
14 March). In this case, the navigation in those areas might
suffer.

In the end, our selection of daily SAR mosaics and FIS
DIR charts pairs resulted in a total of 11 pairs in January, 15
in February and only 8 in March. All other data were rejected
from the classification due to inconsistencies in at least one
DIR class assigned to the corresponding SAR mosaic region
or the time gap restriction (see Sect. 2.2).

3 Methodology for estimation of the degree of ice
ridging

Our classification procedure consists of two stages. First, we
segment the SAR imagery. The primary goal in the segmen-
tation is that the resulting segments would mainly be com-
posed of one DIR category. Then for each segment we com-
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Figure 3. Example of RS-2 SAR data mosaic in HH and HV polarization and the corresponding DIR chart with values extracted from the
digitized Finnish ice charts for 9 March 2013 in the upper panel and 12 March in the lower panel. On both days the SAR shows a similar
ice situation, although the two DIR charts show changes in the ridging classes: in the NW of the Bay of Bothnia, from slightly ridged ice
(DIR 2) to level ice (DIR 1), and in the central to southern part of the Bay of Bothnia, from heavily ridged ice (DIR 4) to slightly ridged ice
(DIR 2). In this case, the data from 9 March 2013 were removed from the classification.

pute a set of SAR texture features which are related to the
ice ridging information. Their definitions are given below in
Sect. 3.1. The vector with the computed features as its com-
ponents is called a feature vector. The second stage is to clas-
sify every segment based on the feature vector and assign
one DIR category label to each segment. Hence, a success-
ful classification requires that the segmentation succeeds, the
features are meaningful and the feature-based classification
is efficient.

3.1 SAR image segmentation

We denote the set of all sites in I by S, a single site (i.e. pixel
location determined by its row and column indices) by s =
s(i,j), with i = {1, . . .,M} and j = {1, . . .,N} and the set of
labels by L= {L1, . . .,LK}. The configuration of the labels
is denoted by 3. After the initial segmentation we have K
classes (labels) with the class-wise means µ= {µ1, . . .,µK}
and variances σ 2 = {σ 2

1 , . . .,σ
2
K}. These means and variances

remain fixed after the initial segmentation. We adopt a first-
order neighbourhood system ∂s in which each site has four
neighbouring sites: two in the horizontal direction and two in
the vertical direction. We use a pairwise clique system. If s
and r belong to the same clique of the site s, i.e. c(s)= {s,r},
then s must belong to the neighbourhood ∂r and r must be-
long to the neighbourhood ∂s. Hence r and s are neighbour-
ing pixels. In the first-order neighbourhood each site has four

cliques. The potential function associated with the clique
c(s) is denoted by Vc(s) or generically Vc. The pixel value
in one site s is denoted by fs and f = {fs |s ∈ S}. Without a
subscript3 refers to a label configuration in S. We denote by
3S the set of all the configurations.

Assume that we at some iteration have the label configura-
tion3∗ in S. In the next iteration, selecting the best new label
L̂s for the site s, given f and 3∗S/s , is equivalent to maxi-
mizing the probability distribution of labels in s, conditioned
by fs and the current label configuration in the neighbour-
hood 3∗∂s . This is possible by utilizing the Markov property
in MRF (Besag, 1974). The selection of the best new label
for the site s can be written as

L̂MAP
s = argmaxLs∈LP(Ls |fs,3∗∂s). (1)

The right-hand side of Eq. (1) can be written as the prod-
uct:

g(fs |Ls)exp
−∑
r∈∂s

Vc(s,r)
, (2)

where the first term g is the likelihood function and the sec-
ond term is the potential function.

For pairwise cliques the potential function Vc(s,r) is re-
duced to only two states:

Vc(s,r)(L)= βγ (Ls,Lr), (3)
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where

Vc(s,r)(L)=
{
+β if Ls = Lr ;
−β if Ls 6= Lr .

(4)

The homogeneity of the region is controlled by the β(> 0)
parameter.

We assume that g has a Gaussian distribution with the
class-wise mean µLs and variance σ 2

Ls
; i.e. in the Gibbs form

it is

g(fs |Ls)= Z−1
s × exp−U(fs |Ls ) (5)

= 1√
2πσLs

exp

(
−(fs −µLs )2

2σ 2
Ls

)
,

where Zs is a normalizing constant and U(fs |Ls) is the like-
lihood energy.

At site s we compute the local energy Us(L), i.e. the log-
arithm of the product in Eq. (2), as

−Us(L)= (6)

log(
√

2πσLs )+
(fs −µLs )2

2σ 2
Ls

+
∑
r∈∂s

βγ (Ls,Lr).

Maximizing the product in Eq. (2) over L yields the new
label L̂s . This maximization is equivalent to minimizing
Us(L).

In a similar manner we obtain the best new labelling 3̂ for
the whole image by solving the local minimization of Us(L)
for every s ∈ S. So the global minimum U(3) is achieved
by local computations. This procedure results in the MAP
estimate for 3̂:

3̂MAP = argmax3∈3SP(3|f )= argmin3∈3SU(3). (7)

These kind of functions can be optimized by various meth-
ods, one being the simulated annealing method (Kirkpatrick
et al., 1983; Černý, 1985), where a slow decrease in the prob-
ability of accepting worse solutions occurs as the algorithm
searches the solution space. The method used here is an adap-
tation of the Metropolis–Hastings algorithm introduced in
Metropolis et al. (1953). In the algorithm the labelling is also
dependent on the control variable called temperature, T , the
value of which decreases as the iteration proceeds. We de-
note the proposed new label by L∗. If the value of the en-
ergy function U(L∗) decreases, L∗ is accepted always. If the
value of U(L∗) increases, the label is accepted with proba-
bility exp(−1U/T ), where 1U is the energy difference be-
tween the new and old configurations.

3.2 SAR image features

We studied the classification of DIR categories using the
computed SAR features and the DIR values from FMI ice

charts. The following SAR features were computed from the
SAR images with 100 m pixel size, and their efficiency in the
DIR classification was studied. Each feature value is a me-
dian value of the feature computed over a single segment.

1. HH polarization SAR backscattering coefficient (σ o
HH),

with incidence angle correction applied;

2. HV polarization SAR backscattering coefficient (σ o
HV),

with incidence angle correction and noise level equal-
ization applied;

3. HH entropy (EHH), computed in windows with a radius
of 5 pixels;

4. HV entropy (EHV), computed in windows with a radius
of 5 pixels;

5. HH autocorrelation (ACHH), computed in windows with
a radius of 5 pixels;

6. HV autocorrelation (ACHV), computed in windows with
a radius of 5 pixels;

7. HH coefficient of variation (CVHH), computed in win-
dows with a radius of 5 pixels);

8. HV coefficient of variation (CVHV), computed in win-
dows with a radius of 5 pixels;

9. Edge density for HH image(EDHH) with scaling: 1000×
Ne/A (Ne is the number of edge pixels and A is the
segment area);

10. Edge density for HV image(EDHV) with scaling: 1000×
Ne/A (Ne is the number of edge pixels and A is the
segment area);

11. Segment size (SSZ);

12. HH kurtosis (KHH), computed in windows with a radius
of 5 pixels;

13. HV kurtosis (KHV), computed in windows with a radius
of 5 pixels.

Additionally we extracted the segment mean of sea ice
concentration (SIC) from the FMI ice charts.

The coefficient of variation was computed separately as

CV= σ
µ
, (8)

where σ is the standard deviation and µ is the mean over the
window. Kurtosis is computed as the fourth moment within
the data window.

Entropy E (Shannon, 1948) was computed as

E =−
255∑
k=0

pklog2pk, (9)
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Figure 4. Example of RS2 SAR data from 9 February 2013 in HH (a) and HV (b) polarizations together with the segmentation result (c) and
the SIC chart (d).

where pk’s are the proportions of each grey tone k within a
window. Autocorrelation, AC (Similä, 1994; Karvonen et al.,
2005), was computed as

CA(k, l)= (10)∑
ij∈B (I (i− k,j − l)−µB)(I (i,j)−µB)

|B|σ 2
B

,

where I (k, l) is the pixel value at location (k, l). Mean over
the horizontal, vertical and diagonal directions, i.e. (k, l)=
(0,1), (k, l)= (1,0), (k, l)= (1,1) and (k, l)= (1,−1) was
used to accomplish directional isotropy. The computation
window is denoted by B.

Edge density D was computed for each segment (sepa-
rately at the HH and HV polarizations) after edge detection
by the Canny algorithm (Canny, 1986) as

D =Ne/N, (11)

where Ne is the number of edge pixels within a segment and
N is the segment size in pixels.

Most of the features have a straightforward interpreta-
tion. Entropy describes how uniformly the HH/HV values

are distributed. Edge density is a measure for edge fragments
present in the segment, which we assume to be related to
ridging. The coefficient of variation (CV) describes how fast
the standard deviation increases with the mean. We expect
that in the ridged areas CV is larger than in the homogeneous
areas. Kurtosis describes the peakiness of the σ o distribution.
With the aid of the spatial autocorrelation we can quantify
how structured the ice field in question is in the SAR im-
agery. We expect that more structural elements appear in the
ridged ice than in the level ice for which the spatial σ o vari-
ation is more random.

In Fig. 5 the computed features for an area in the central
Bay of Bothnia on 15 March 2013 are shown. Moderately
and heavily ridged areas were present here.

3.3 Random forest classification method

After trying several classification methods (local regression,
logistic regression, general additive regression model) we
found that the random forest (RF) (Breiman, 2001) approach
produced good enough results to be of practical use. Random
forest is an ensemble learning method which can be applied
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Figure 5. Example of SAR features computed for the central part of the Bay of Bothnia. (a–b) Original SAR HH and HV in 500 m resolution.
(c) Segmentation result of the first principal component of the original HH and HV SAR channels. (d) SIC (1–100 %), (e) FIS DIR (1–4),
(f–g) segment means, (h) ACHH, (i) ACHV, (j) EHH, (k) EHV, (l) CVHH, (m) CVHV, (n) EDHH, (o) EDHV, (p) KHH, (q) KHV.

to classification and regression. In RF we artificially gener-
ate several training sets from a single training set at our dis-
posal using bootstrapping, grow a classification tree for each
individual training set, perform classification for each tree
and then aggregate the results. The bootstrap aggregation is
called bagging. This technique is efficient for reducing vari-
ance in high-variance predictions in the same manner as tak-
ing an average of samples in Breiman (2001).

For the classification of the daily sea ice data we divided
our data into the training and the test data sets (see Sect. 2.2).

In our computations we have used the routines included in
the commercial software Matlab.

3.3.1 Description of the algorithm

Here we outline the RF classification method and the nota-
tions used in this algorithm. The classes are denoted by C =
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{1, . . .,C}. We have a training set X = {x1, . . .,xN } where
each sample xi consists of a feature vector f i and the cor-
responding class. When we take a bootstrap sample from X,
we denote it Z∗. Our bootstrap sample Z∗ is the same size
as the original sample, so on average the fraction 63 % of the
original samples ofX belongs to it and the rest are duplicates
(Efron and Tibshirani, 1993). The samples ofX left out from
Z∗ (about 37 % of the samples) are called out-of-bag (OOB)
samples.

The classification tree is denoted by Tb(2b) with b ∈
{1, . . .,B} and it uses Z∗ as its training data. Each end node n
of Tb(2b) has a class label which is the most frequent class
in that node. The parameter 2b characterizes the bth ran-
dom forest tree in terms of split variables, split points at each
node and terminal node class label. The class label given by
Tb(2b) depends on the feature vector f i which is used as
input for the tree. It is denoted by Ĉb(f i,2b). We generate
B bootstrapped training sets and relying on every training set
we grow a classification tree Tb(2b). A classification tree of-
ten achieves a rather low bias if it is grown deep with many
nodes without pruning (Hastie et al., 2011) .

The impurity measure is the Gini index G:

G= 1−
C∑
c= 1

p(c|n)2,

where p(c|n) is the proportion of the samples that belong to
class c at a particular node n. G indicates how dominant the
class c is in the subtree after the split. A small Gini index
value indicates that the subtree contains predominantly ob-
servations from a single class. In the split the feature compo-
nent of the vector f i with the smallest Gini index is utilised
(Ripley, 1996).

In classification we record the classes predicted by the en-
semble of B trees for a specific feature vector and take a ma-
jority vote. The most common class is the class predicted by
the ensemble. Then the selected class has a smaller uncer-
tainty than a single classification tree (Hastie et al., 2011),
because an average has a smaller variance than a single vari-
able. This is also true for the correlated variables. IfB is large
enough then the random forest algorithm avoids the tendency
of over fitting the model which often occurs in the context of
the decision trees.

The problem with bagging is that the grown trees are cor-
related. To reduce this correlation the RF has a randomisa-
tion step. When building trees, each time a split in a tree is
considered, a random sample of m predictors is chosen as
split candidates from the full set of p predictors (m= 4 and
p = 8 here). A new sample of m predictors is taken at each
split. This step prevents the same features from dominating
every tree.

The flow of the random forest algorithm is described be-
low.

Algorithm 1 Random forest algorithm for classification

1. For b = 1 to B:

a. Draw a bootstrap sample Z∗ of size N from the training
data.

b. Grow a random-forest tree Tb(2b) with the bootstrapped
data, by recursively repeating the following steps for each
terminal node of the tree, until the minimum node size is
reached.

i. Select m variables at random from the p variables.
ii. Determine the best variable and split-point among

the m variables using the Gini index.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb(2b)B1 }.

To classify a new feature vector f n:

Classification: Let Ĉb(f n,2b) be the class prediction
of the bth random-forest tree.
Then ĈB

rf
(f n) = majority vote{ ˆCb(f n,2b)}B1 .

3.3.2 Selection of the features

Because an ensemble of trees was used in RF and a large
number of features were utilized, the results were hard to
interpret. To analyse the impact of different features on the
class estimation the importance measure was used. The value
of the importance measure is called an importance value.
This measure is implemented as follows.

For each tree, the classification error on the OOB portion
of the data is computed. This gives the baseline error rate for
the tree. Then in the OOB set we randomly permute one fea-
ture of the feature vector f i and simultaneously keep fixed
the other features in f i . We note that the marginal sampling
distribution of the picked feature remains the same during
the permutation. Next, we recalculate the classification error
in the OOB set. This classification error is compared to the
baseline error. Usually it is larger than the baseline error. The
procedure is repeated for every feature separately. The de-
crease in classification rate as a result of this permuting is
averaged over all trees and is used as a measure of the impor-
tance of the chosen feature.

To select the features we run the RF algorithm for several
feature combinations and for several different training data
sets. The importance of the features as well as the classifi-
cation accuracy was monitored. This empirical approach led
to the choice of 8 features from the computed 13 features
introduced in Sect. 3.2, including the additional SIC feature.

In summary we found that the RF classification presents
the following advantages: (i) RF has the ability to describe
complex, non-linear statistical relationships among variables,
(ii) RF reduces the uncertainty of the obtained estimate and
(iii) RF reduces the possibility of overfitting. The greatest
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Table 1. Comparison of ice ridge statistical parameters derived from
the HEM data with ice chart degrees of ice ridging.

DIR 3 4

Number of cells 590 1079
Ridge sail height (m) 0.61 0.61
Ridge density (km−1) 12.7 21.5
Total thickness (m) 0.76 1.08

weakness in RF is its relatively weak extrapolation property
(Hastie et al., 2011). This property can be seen from the be-
haviour of the error rates. The RF classifier has a very low
training error rate but the error rates increase significantly
for the test set.

4 Results

4.1 Ice chart ridging categories vs. surface and
thickness profile data

We use the March 2011 HEM campaign data to study how
well the DIR categories in the FIS charts describe the ac-
tual ridging. As the variation is much larger for ridge density
than for sail height, ridging is parameterized here by den-
sity only. The other parameter considered is the total thick-
ness of ridged ice. This is a navigationally relevant parameter
that can be used to calculate the ice-going speed of ships. To
establish compatibility with the ice chart, which employs a
1×1 nautical mile (NM) grid, the sail density and ridged-ice
thickness from the March 2011 data were calculated as aver-
ages for the cells of the grid. There are two different aspects
of comparison involved. The first is the relationship between
ridge density and DIR in the ice chart data. The other is the
relationship between ridge density and ridged-ice thickness,
which is in general relevant to the question of how well sur-
face data can represent the total thickness of ice. Thus, the
comparison is made between ridge density and DIR and, on
the other hand, between ridged-ice thickness and DIR.

Although somewhat qualitative the DIR indices are esti-
mates made by sea ice specialists and refer to the Lagrangian
ice chart regions corresponding to various formation and de-
formation phases of the ice cover. The reliability or their
boundaries is usually high. The DIR value 1, corresponding
level- and rafted-ice categories, had very small coverage in
the data, while DIR 2, the category of slightly ridged ice,
was not found at all. The comparison is therefore made for
the DIR values 3 and 4, or moderately and heavily ridged ice.
The sail height retrieved from the profile data was equal for
these categories, while a clear difference was found for the
ridge densities and ridged-ice thicknesses; see Table 1. This
indicates that a rough but reliable quantification of ridging
can be based on DIR values only. A more detailed picture can
be obtained from comparisons of Fig. 6 between DIR and,

on the other hand, ridge density and total ice thickness from
the March 2011 data. For the ridge density the colour bar
range is chosen to be from 12.7 to 21.5, which are the average
densities corresponding to DIR 3 and 4 in Fig. 6. Ice thick-
ness colour bar was scaled similarly. Thus, all values below
the averages corresponding to DIR 3 are blue and all values
above averages corresponding to DIR 4 are pink. Above and
below the colour bar range the ridge density still has a wide
range of variation, as is seen from the histogram in Fig. 6.
However, the basic regional characteristics are similarly vis-
ible in all three data sets. In spite of the utmost simplicity
of the DIR it was in a reasonably good agreement with both
ridge density and total thickness. The agreement with DIR
was somewhat better for the total ice thickness than for the
ridge density. This may be related to the fact that a large frac-
tion of ridging does not show in the density due to the cut-off
but affects the SAR-based and visual estimates behind DIR
values. The generally good agreement between DIR, ridge
density and total thickness means that DIR values estimated
from SAR can be translated to navigationally relevant ridg-
ing or thickness parameters. The largest differences between
the degree of ice ridging and HEM quantities were found in
the coastal ridge field extending from 64◦ N, 23◦ E towards
SW (see Fig. 2). Both ridge density and average sail height
were lower for this part in comparison with the extension of
the same ridge field towards NE from this location. These
values were also similar to those found in the mid-basin, so
the missing separation of this coastal ridge field into two cat-
egories that were apparent from the HEM data is clearly a
shortcoming of the ice chart DIR data.

4.2 Monthly backscattering statistics

We concentrated our analysis on the areas with SIC over
80 %. In areas with ice concentration varying from 80 to
90 %, the amount of open water can impact the backscat-
tering statistics significantly, particularly during high winds.
This SIC limitation excluded the marginal ice zone (MIZ),
which is defined as consisting of ice areas with SIC from
15 % to80 %; see e.g. Strong (2012), from our analysis. Al-
most all areas with SIC from 80 to 90 % belonged to level-ice
polygons in our data set. In total the level-ice category DIR
1 covered well over 50 % of all the ice areas during our test
period.

According to earlier studies the effect of incidence angle
on σ o for level ice and ridged ice is rather similar. In Mäky-
nen et al. (2002) it was found that the incidence angle de-
pendence of σ o

HH in logarithmic scale (dB) can be described
by a linear model, with slopes −0.21 dB degree−1 for ridged
ice and −0.25 dB degree−1 for level ice. It seems that using
a slope of −0.23 for all the data is adequate for automated
classification, and the ridged areas and level ice can be distin-
guished both at near and far range. Also, a more sophisticated
approach that iteratively applies different slopes to level ice
and ridged ice has been studied in Karvonen et al. (2002),
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Figure 6. Ridge density variation in the test area (a), HEM thickness measurements (b), DIR indices (c) and histogram of ridge densities
determined for one 1× 1 NM cell (d).

Figure 7. The monthly HH-polarization backscattering coefficient distribution for level (dashed line) and ridged (solid line) ice areas. The
results are for January (a), February (b) and March (c) 2013.
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but the effect on sea ice classification was minor. When in-
specting the SAR mosaics visually, most of the SAR frame
boundaries were not visible or were hardly visible, indicating
successful σ o

HH incidence angle correction. For open water
the correction may not work properly as open water σ o sig-
natures depend heavily on wind speed and swell (i.e. surface
roughness).

For the HV channel, the combination of the incidence an-
gle and noise floor correction is essential. Without this cor-
rection the HV backscattering and texture features derived
from it can not be used in classification as the effect of the
varying noise floor is so high (up to about 3 dB) and will
cause a significant number of misclassifications. However,
after correction the HV channel data can be used in classi-
fication and we have not visually observed any significant
differences in near-range and far-range σ o

HV for either open
water, level-ice or ridged-ice classes.

We first looked at how the σ o
HH distribution changes

monthly from January to March 2013 in two main ice cat-
egories: level ice (DIR 1) and ridged ice (DIR> 1) (see
Fig. 7). At the beginning of January level ice appeared mainly
near the coast of the Sea of Bothnia, and the dominance of
mostly thin ice in the Sea of Bothnia continued up to the mid-
dle of February, whereas in the Bay of Bothnia ridged-ice
areas appeared throughout the whole test period. A signifi-
cant fraction of the level-ice pixels had a σ o

HH value below
−18 dB, indicating thin smooth ice. For thin ice relatively
high σ o

HH (over −18 dB) have also been observed (Mäkynen
and Hallikainen, 2004). Also, the presence of the level-ice
areas with a relatively low SIC (80–90 %) meant that open-
water patches affected the level ice σ o

HH, yielding both high
and low σ o

HH values. The level-ice σ o
HH values above −18 dB

were evenly distributed in January. Ridged-ice areas had a
large σ o

HH peak at −16.5 dB and most of the remaining pixel
values ranged from −16 to −12 dB.

In February level ice σ o
HH still had a sharp peak around

−20 dB indicating the presence of very thin ice, but most
of the σ o

HH values had spread between −16 and −11 dB. In
the ridged areas a majority of σ o

HH values were in the range
between −17 and −12 dB. The mean and median values of
σ o

HH for level-ice areas and ridged areas were almost identi-
cal in January and February. In March the σ o

HH statistics for
level and ridged areas showed a clear discrepancy here. The
level-ice σ o

HH values were distributed from −20 to −10 dB,
whereas the σ o

HH values from ridged areas were concentrated
in the range from −15 to −11 dB. The average σ o

HH value
from the ridged areas was over 2 dB higher than that of the
level-ice areas unlike in previous months. There was a sig-
nificant increase in the magnitude of σ o

HH from ridged areas,
whereas this was not the case for the level-ice σ o

HH.
Based on Fig. 7 it was obvious that the magnitude of σ o

HH
alone could not be an efficient predictor in the estimation of
the DIR value in January and February.

We assume that the small separation in the σ o
HH values

originating from level ice and ridged ice during the first 2

Table 2. Confusion matrix for the level ice vs. ridged ice (cate-
gories DIR 2 to 4) in the RF classification for the whole test period.
The largest estimated DIR category for each reference category is
marked in bold.

FIS Sample size Ice category

Ice category N level ridged

Level 59 % 87 % 13 %
Ridged 41 % 24 % 76 %

test months was due to the following two main reasons. As
mentioned earlier the level-ice areas mostly had SIC less than
90 %. So the backscattering from open water had a significant
contribution to the level-ice σ o

HH. In addition, the level-ice
area (DIR 1) had significant uncertainties in the FMI charts.
The ice analysts responsible for the charts told us that in sev-
eral cases it was difficult or nearly impossible to discriminate
reliably between level ice and slightly ridged ice (DIR 2). In
these cases they usually chose the level-ice category if the
icebreaker reports did not indicate any difficulties for mer-
chant ships. If these had been reported, a slightly ridged-ice
category (DIR 2) was chosen.

Considering the σ o
HH contrast between level- and ridged-

ice areas, the situation changed gradually in February and
March towards a more distinct separation between these
ice types. We shall analyse the DIR charts separately for
the period of strong thermodynamic ice growth (January–
February) and more stable winter conditions (March) in
Sect. 4.3.

The examination of the monthly σ o
HV distributions (see

Fig. 8) confirms our findings for the σ o
HH distribution. In Jan-

uary and February the values of σ o
HV from level-ice areas

were close to the noise floor (−28 dB) and hence uninfor-
mative for a meaningful analysis. In the ridged areas σ o

HV
were 2–3 dB higher but still in general rather low, indicating
a low sea ice surface roughness. In March the σ o

HV distribu-
tions both in level-ice areas and ridged areas were on average
about 1–2 dB higher than in the previous months. Also, the
contrast in the σ o

HV between ridged and level ice was more
significant. As a consequence, the σ o

HV values affected the
classification result in March but were not useful in the ear-
lier months.

4.3 Classification results for several ridging categories

There was a fundamental imbalance between the sample
sizes representing level-ice and ridged-ice classes. The sam-
ples from all the ridged-ice classes formed about 40 % of
all samples. If we had required that all the classes were of
equal size in the training data, the number of observations
per ice category would have been low, e.g. less than 20 % of
the level-ice samples would have been utilized. When assess-
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Figure 8. The monthly HV-polarization backscattering coefficient distribution for level (dashed line) and ridged (solid line) ice areas. The
results are for January (a), February (b) and March (c) in 2013.

Table 3. Confusion matrix for all ridged-ice categories in the RF
classification. The largest estimated DIR category for each refer-
ence category is marked in bold.

FIS Sample size RF classes

DIR N 1 2 3 4

W
ho

le
pe

ri
od 1 59 % 93 % 1 % 4 % 2 %

2 14 % 42 % 15 % 28 % 15 %
3 15 % 32 % 5 % 45 % 18 %
4 12 % 18 % 3 % 20 % 59 %

Ja
nu

ar
y

20
13 1 72 % 94 % 2 % 4 % 0 %

2 6 % 48 % 15 % 36 % 0 %
3 21 % 35 % 1 % 64 % 0 %
4 1 % 47 % 0 % 21 % 32 %

Fe
br

ua
ry

20
13 1 55 % 92 % 1 % 5 % 2 %

2 19 % 46 % 13 % 21 % 20 %
3 17 % 21 % 6 % 29 % 44 %
4 9 % 18 % 16 % 16 % 51 %

M
ar

ch
20

13 1 59 % 92 % 4 % 2 % 2 %
2 9 % 16 % 32 % 21 % 31 %
3 10 % 44 % 4 % 51 % 1 %
4 22 % 4 % 2 % 6 % 88 %

ing the results we will keep in mind the very different sizes
of the ice classes.

We run all our random forest classifications with the same
set of tuning parameters for routine TreeBagger (Matlab,
2016). From the set of eight (p = 8) features we randomly
chose m= 4 features to be used in a split. Often the value
m=√p, i.e. m= 3 here, would have been recommended
(Hastie et al., 2011). However, we noted that slightly better
results were obtained with m= 4 for our data set. Another
fixed option was that the minimum number of data points in
the end nodes was set to 10. We grew 200 trees during the

classification. Results with more decision trees did not yield
any significant improvement of the error rates.

In the first phase we investigated the capacity of the RF
classifier to separate level and ridged ice. Data from all 3
months were included in the analysed data set. The results
are presented in Table 2. The overall classification rate was
82 % for the whole of winter.

Next we examined the classification of all the four ridg-
ing categories throughout the 3-month period. The training
and test data sets had been selected from each month in our
data set. The overall classification rate for the test period was
71 %. Looking at the confusion matrix in Table 3 we can
observe that the level-ice category (93 %) had a very high
classification rate. The classification of the three categories
for ridged ice was more challenging. The ridged-ice category
(DIR 3) was classified correctly in 45 % of the cases but over
30 % of the observations were confused with level ice. The
slightly ridged ice (DIR 2) was poorly distinguished. Only in
15 % of the cases was it detected correctly. Most DIR 2 sam-
ples (42 %) were assigned to the level-ice category which in
light of the previous discussion could be expected, i.e. the
preference among the FIS ice analysts to use level-ice cat-
egory over slightly ridged ice in the manual ice charts. The
ridged-ice category with the most accurate classification rate
(59 %) was the heavily ridged-ice category (DIR 4).

To obtain more information on how the adopted approach
works in rapidly changing ice conditions and in more sta-
ble winter conditions, we classified all 3 test months sep-
arately so that the training and testing data were collected
during the same month. The overall accuracy of the monthly
results varied largely, being lowest in February (63 %) and
higher in January (83 %) and March (81 %). The correspond-
ing Cohen’s kappa figures were 0.60 (substantial agreement),
0.52 (moderate agreement) and 0.68 (substantial agreement).
The separation between all ice categories was best in Jan-
uary (overall accuracy 83 %) when basically only three DIR
categories appeared. Evidence that the definitions of the dif-
ferent DIR categories were inconsistent with each other in
January and February was that in these months the detection
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Figure 9. The detection rates for the different DIR categories in all the classification.

Figure 10. Degree of ice ridging extracted from the digitized Finnish ice charts on 9 February 2013 (a) and the result of estimated DIR based
on our RF approach (b). The DIR charts include the marginal ice zones (25 %< IC< 80 %) extracted from the ice concentration charts (see
Fig. 4).

rate stayed below 100 % for the training data in the RF clas-
sification but was 100 % for the March training data.

In each month level ice was the dominant ice category,
being over 50 % across the ice-covered area. The DIR 2 cat-
egory covered from 6 to 19 % of the ice area depending on
the month. In no month was DIR 2 successfully detected due
to its ambivalent definition with respect to the DIR 1 cate-
gory. The DIR 3 category was successfully detected in Jan-
uary when its areal coverage was large (21 %), and in March
when the boundaries between different ice categories were
best defined during the test period. The heavily ridged-ice
fields (DIR 4) were classified well, except in January when
such ridged areas were rare (about 1 %). A possible expla-
nation for the lowest accuracy rate in February was that the
boundaries between different DIR regions were often visu-
ally rather difficult to discern in the SAR imagery according
to our experience. Figure 9 shows the variation of the de-
tection rate for each DIR category in all the classification
results. The most distinct feature in the results is the consis-
tently poor detection rate for DIR 2.

In Fig. 10 we can see the Baltic Sea ice DIR classification
result (panel a) for a dual-polarized SAR image mosaic on
9 February 2013 (Fig. 4a, b). Also, the reference DIR chart

is shown for comparison (panel b). The automated DIR chart
produced agreed well with the FIS ice charts for DIR val-
ues 1 and 3. However, the automated chart estimated a large
fraction of DIR 2 category ice to DIR 4 category. The auto-
mated DIR chart contained detailed markings of the cracks
and openings in the central Bay of Bothnia which were not
present in the FIS chart. We remark that the SAR mosaic
on 9 February looked very similar to the one on 7 Febru-
ary (2 days earlier), when the same cracks or openings can
be found, but the corresponding FIS ice chart DIR showed
DIR 4 in the areas to which DIR 3 was now assigned. This
can be taken as an example of the subjectivity which is in-
herent to the manual ice charts.

There is a good overall agreement between the FIS chart
and our DIR classification in Fig. 12. Most of the differ-
ences occur in the Bothnian Sea. There the FIS chart indi-
cates mostly level ice and to some extent slightly ridged ice.
However, the classification assigned the ridged-ice and heav-
ily ridged-ice categories to some FIS level-ice areas. Based
on the SAR HH- and HV-polarization mosaics (see Fig. 11)
those areas represent broken ice fields, although the ridging
intensity is hard to assess visually.
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Figure 11. Example of RS2 SAR data on 15 March 2013 in HH (a) and HV (b) polarizations. (c) MRF MMD segmentation result for the
HH-HV first PCA component. (d) Ice concentration chart extracted from the Finnish ice chart.

Figure 12. Degree of ice ridging extracted from the digitized Finnish ice charts on 15 March 2013 (a). Result of estimated DIR based on
our RF approach (b). The DIR charts includes the marginal ice zones (25 %< IC< 80 %) extracted from the ice concentration charts (see
Fig. 11).

The major reason for the success of the classification in
March is the better discrimination between the ridged ice and
level ice in March than in the previous months as noted ear-
lier in Sect. 4.2. The better discrimination property between

ridging ice categories affects the final results in two ways.
First, the segment boundaries of the dual-pol SAR imagery
follow the boundaries of the DIR classes better in March (see
Fig. 11). Secondly, the segment-wise feature vectors show
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Table 4. The importance of different features when the training data covered the whole test period.

Feature SIC KHH σ o
HH EDHH ACHH EHH CVHH σ o

HV

Importance (%) 13.9 11.9 11.7 11.3 8.1 7.2 7.2 6.9

more variability between different ridging categories in mid-
winter. The combination of these two factors determine the
accuracy of the final classification.

We studied the success of the segmentation by examining
how the large fraction of the segments contained practically
just one ridging category; i.e. the area of some ridging cat-
egory covered over 90 % of the segment area. The results
were that in January 93 % of the SAR imagery belonged to
the segments, in February 80 % and in March 86 %. The high
fraction of well-defined segments in January is easy to un-
derstand because most of the ice was level ice (72 % of the
area), and just three ridging categories appeared (the heavily
ridged area covered less than 1 %). In February the fraction
of level ice has decreased to 55 % of the total area, all four
ice categories were present, and the total area of well-defined
segments decreased to 80 %. In March the level-ice area cov-
ered 59 % of the total area and the area of the well-defined
segments was 86 %. Hence there was better segmentation ac-
curacy in March than in February. In that month the total area
of correctly classified ridging categories was 81 %, 5 % less
than the total area of the well-defined segments. In February
the total area of correctly classified ridging categories was
just 63 % which means 17 percent points less than the to-
tal area of the well-defined segments. This analysis suggests
that the main separating factor contributing to the classifica-
tion accuracy was due to the more versatile feature vectors in
March.

4.4 Importance of features

The selection of the eight features in Sect. 3.3.2 was based
on their importance value. The features consisted of six HH-
polarization-based segment-wise features (see Sect. 3.2) and
the segment-wise σ o

HV as well as the SIC value extracted
from the FIS ice chart. Their importance order when the
training data covered the whole test period is presented in
Table 4. If the training data of just 1 month were used the
importance order of features varied slightly. The importance
of one specific feature is relative in the sense that it changes
when the combination of the used features changes, i.e. the
importance of one feature depends on which other features
are included. However, the feature SIC remained the most
influential feature in every case. This is comprehensible be-
cause when SIC was between 80 and 90 %, the ice area in
question almost always represented the level-ice category
(DIR 1) and the corresponding feature vector was easy to
classify correctly. The rather low importance value of σ o

HV is
probably due to the relative narrow range of the σ o

HV values.

To gain more insight into how the eight selected features
affected the classification accuracy, we studied the possibil-
ity of feature reduction using the March data as a benchmark.
The March data were selected because the diversity of ridg-
ing categories was largest then (see Table 3). We systemati-
cally eliminated the selected features one by one and reclas-
sified the March test data using the remaining features. In
none of the cases did the classification accuracy improve with
fewer features. For several removed features (EHH, ACHH,
KHH, σ o

HV) the classification accuracy decreased by just a
few percent points (1–3 %). The removal of the EDHH fea-
ture did not practically affect the accuracy at all. A signifi-
cant misclassification rate increase was observed with the re-
duction of the σ o

HH (−6 %), CVHH (−8 %) and SIC (−12 %).
In every case the relative importance of the retained features
changed. Hence the importance of the features present in Ta-
ble 4 is true only in the context of this specific feature com-
bination.

To see more clearly that the features included in the fea-
ture vector complement each other and make the classifica-
tion more robust, we classified the March data using only
three basic features (f 3 = (SIC,σ o

HH,σ
o
HV)). The overall ac-

curacy was just 64 %. Then we added the feature CVHH to f 3
because CVHH caused a significant drop in the accuracy. The
accuracy remained low, at only 68 %. Our conclusion is that
the information provided by the whole feature set is needed
for a good description of ridged-ice field in the SAR imagery.
If a reduction of one feature already decreases the classifica-
tion accuracy, the reduction of two or more features would
degrade the classification further. The only feature which
may be unnecessary is EDHH. It was also the most heuristic
one (see Sect. 3.2). Because it does not decrease the classi-
fication accuracy, we kept it in our feature combination. We
also experimented with replacing the HH-polarization-based
features with their HV-polarization counterparts. This led to
degradation of the classification accuracy in all of the studied
cases.

5 Discussion and conclusions

The degree of ice ridging is one of the most useful param-
eters for ice-navigating ships. It basically indicates, together
with the ship characteristics, whether a vessel can safely pass
through an ice field or not. The DIR also complements the
more general risk index outcome (RIO), defined by IMO
(2016), as this does not address ridging but relies on WMO
categories for this stage of development. We have shown that
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an automated estimation of the DIR from SAR texture fea-
tures, together with an ice concentration estimate, performs
well when compared to the values extracted from the man-
ual FIS ice charts. The applied features describe statistics of
σ o variation in the SAR imagery. DIR estimation is a suit-
able task for a SAR-based approach because the C-band σ o

is sensitive to the large-scale surface roughness due to ridg-
ing.

Both independently operating ships as well as ships rely-
ing on icebreaker support operate in ice-infested waters. In
the Baltic Sea most of the merchant ships need icebreaker
assistance. However, ships of the highest Finnish–Swedish
ice class in the Baltic Sea, 1A Super, which is equivalent to
the Polar Class PC 6, are designed to operate in difficult ice
conditions independently. The FIS ice charts are prepared to
serve operations in which ships follow an icebreaker in a con-
voy. Based on discussions with the FIS ice analysts the fol-
lowing remark is made. If the ice conditions in an area do
not pose a realistic risk for icebreakers to get stuck, a smaller
DIR value is often assigned to this area, even if the area is
difficult for independent navigation of merchant ships. This
is especially true for DIR 2. Hence, the availability of the ice-
breaker assistance has an effect on the DIR classifications in
the FIS ice charts.

The primary objective of our DIR classification algorithm
is to separate the severe ice conditions from the easier navi-
gable ones. To reach this goal our DIR classification mainly
relies on SAR image statistics. In some cases this may lead
to differences between the FIS ice charts and our classifica-
tion results because the FIS charts take the icebreaker fac-
tor into account, which is not present in the SAR imagery.
Hence, these two data sets can be interpreted from slightly
different perspectives. An example of this difference is our
earlier discussion related to Figs. 10 and 12. One of the es-
sential advantages of the automated DIR charts is that they
include leads and small level-ice areas between ridged areas
not present in the coarser FIS charts.

We used a two-stage classification system. First, we seg-
mented the dual-pol SAR mosaics. The result was slightly
different for different months. The area of level ice always
exceeded 50 % of ice cover. In January it was highest, over
70 %. In that month 93 % of the segmented area belonged
to the segments dominated by one ice category. In Febru-
ary and March the respective figures were 80 and 86 %. It
should be noted that for January only three DIR categories
were present, unlike for the last 2 months in which all four
DIR categories appeared. We can conclude that the SAR sig-
natures matched the DIR boundaries best in March when the
amount of ridging in our test period was at its maximum.

In the second phase of the classification we classified
the segments using segment-wise feature vectors, classifying
each segment to one ridging category. This was most suc-
cessful in March (82 %). Then the ridging intensity varied
largely in different regions in our test area and the resulting
texture of the SAR imagery was more versatile than in the

other studied months. It is worth noting that in March the
accuracy of the feature-based classification was just five per-
centage points lower than the total area of the well-defined
segments; i.e. the feature-based classification succeeded with
the RF classifier. This result can be regarded as a confirma-
tion that the computed features were well suited to describing
the ridging in the SAR imagery. In January the classification
accuracy was at the same level as in March (83 %) but the
area covered by the well-defined segments was much larger,
indicating that the feature-based classification did not per-
form as well as in March. In January and February the ice
was thinner and the degree of ridging lower than in March.
In these 2 months the σ o

HH and σ o
HV distributions from level

ice and ridged ice overlapped substantively. This weak dis-
crimination between level ice and ridged ice can be partly
attributed to the subjective interpretation of the level-ice cat-
egory at FIS as discussed in Sect. 2.5.

Our approach works best in the Baltic Sea when the evolu-
tion of winter has passed the freezing phase and a significant
amount of ridging has occurred. Then ridging strongly con-
tributes to the texture of the SAR images.

Before setting up an operational DIR estimation system
over the Baltic Sea, we need to test our algorithm with more
winters data and to optimise it for the best possible result.
In an operational mode we can use the most recent SAR/FIS
and SIC data for the training. Instead of using the SIC in-
formation present in the FIS charts we can also use an au-
tomated radiometer or combined radiometer/SAR-based SIC
data. Currently, the finest resolution in operational SIC prod-
ucts is offered by the Advanced Microwave Scanning Ra-
diometer 2 (AMSR2)-based ASI sea ice algorithm (Beitsch
et al., 2014). The grid size in the product is 3.125 km. To im-
prove our product during ice forming or melting periods, we
can include ice thickness as an additional parameter in future
DIR classifications.

We have plans to extend our algorithm to the Arctic Ocean,
where there is a high demand for reliable ice information for
independently navigating merchant vessels. Harsh ice con-
ditions, such as those in March 2013 in this study, prevail
much longer in the Arctic seasonal ice regime than in the
Baltic. The consistent availability of DIR charts in Arctic
would enable the monitoring of areal evolution of different
ridging intensity categories. An automated DIR chart utiliz-
ing fine-resolution SAR data and classifying the suitability of
different areas for navigation would benefit all Arctic ship-
ping.

The ice ridging and its backscattering mechanisms are
similar in the Baltic and Arctic. In general, Arctic sea ice
is thicker and ridges can be larger than in the Baltic. How-
ever, the backscattering increases as a function of the surface
roughness in both areas. We have visually inspected SAR im-
agery over seasonal sea ice in the Barents and Kara seas and
they look similar to corresponding imagery over the Baltic.
This builds confidence that our algorithm, with possible mi-
nor adjustments, could be applied to the Arctic first-year ice.
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Nevertheless, the possible applicability of the method to the
multi-year ice areas must be studied separately.
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