Articles | Volume 12, issue 10
https://doi.org/10.5194/tc-12-3355-2018
https://doi.org/10.5194/tc-12-3355-2018
Brief communication
 | 
23 Oct 2018
Brief communication |  | 23 Oct 2018

Brief communication: Solar radiation management not as effective as CO2 mitigation for Arctic sea ice loss in hitting the 1.5 and 2 °C COP climate targets

Jeff K. Ridley and Edward W. Blockley

Related authors

The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2023-1731,https://doi.org/10.5194/egusphere-2023-1731, 2023
Short summary
The coupled system response to 250 years of freshwater forcing: Last Interglacial CMIP6–PMIP4 HadGEM3 simulations
Maria Vittoria Guarino, Louise C. Sime, Rachel Diamond, Jeff Ridley, and David Schroeder
Clim. Past, 19, 865–881, https://doi.org/10.5194/cp-19-865-2023,https://doi.org/10.5194/cp-19-865-2023, 2023
Short summary
The Antarctic contribution to 21st-century sea-level rise predicted by the UK Earth System Model with an interactive ice sheet
Antony Siahaan, Robin S. Smith, Paul R. Holland, Adrian Jenkins, Jonathan M. Gregory, Victoria Lee, Pierre Mathiot, Antony J.​​​​​​​ Payne, Jeff K.​​​​​​​ Ridley, and Colin G. Jones
The Cryosphere, 16, 4053–4086, https://doi.org/10.5194/tc-16-4053-2022,https://doi.org/10.5194/tc-16-4053-2022, 2022
Short summary
Sea ice floe size: its impact on pan-Arctic and local ice mass and required model complexity
Adam William Bateson, Daniel L. Feltham, David Schröder, Yanan Wang, Byongjun Hwang, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 16, 2565–2593, https://doi.org/10.5194/tc-16-2565-2022,https://doi.org/10.5194/tc-16-2565-2022, 2022
Short summary
Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice
Adam W. Bateson, Daniel L. Feltham, David Schröder, Lucia Hosekova, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020,https://doi.org/10.5194/tc-14-403-2020, 2020
Short summary

Related subject area

Discipline: Sea ice | Subject: Sea Ice
Why is summertime Arctic sea ice drift speed projected to decrease?
Jamie L. Ward and Neil F. Tandon
The Cryosphere, 18, 995–1012, https://doi.org/10.5194/tc-18-995-2024,https://doi.org/10.5194/tc-18-995-2024, 2024
Short summary
Impact of atmospheric rivers on Arctic sea ice variations
Linghan Li, Forest Cannon, Matthew R. Mazloff, Aneesh C. Subramanian, Anna M. Wilson, and Fred Martin Ralph
The Cryosphere, 18, 121–137, https://doi.org/10.5194/tc-18-121-2024,https://doi.org/10.5194/tc-18-121-2024, 2024
Short summary
The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020
Fanyi Zhang, Ruibo Lei, Mengxi Zhai, Xiaoping Pang, and Na Li
The Cryosphere, 17, 4609–4628, https://doi.org/10.5194/tc-17-4609-2023,https://doi.org/10.5194/tc-17-4609-2023, 2023
Short summary
A large-scale high-resolution numerical model for sea-ice fragmentation dynamics
Jan Åström, Jari Haapala, and Arttu Polojärvi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-97,https://doi.org/10.5194/tc-2023-97, 2023
Revised manuscript accepted for TC
Short summary
Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow
MacKenzie E. Jewell, Jennifer K. Hutchings, and Cathleen A. Geiger
The Cryosphere, 17, 3229–3250, https://doi.org/10.5194/tc-17-3229-2023,https://doi.org/10.5194/tc-17-3229-2023, 2023
Short summary

Cited articles

Baek, H. J., Lee, J., Lee, H. S., Hyun, Y. K., Cho, C., Kwon, W. T., Marzin, C., Gan, S. Y., Kim, M. J., Choi, D. H., Lee, J., Lee, J., Boo, K. O., Kang, H. S., and Byun, Y. H.: Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways, Asia-Pacific, J. Atmos. Sci., 49, 603, https://doi.org/10.1007/s13143-013-0053-7, 2013. 
Chen, Y. and Xin, Y. : Implications of geoengineering under the 1.5 C target: Analysis and policy suggestions, Adv. Clim. Change Res., 8, 123–129, https://doi.org/10.1016/j.accre.2017.05.003, 2017. 
Comiso, J. C., Meier, W. N., and Gersten, R.: Variability and trends in the Arctic Sea ice cover: Results from different techniques, J. Geophys. Res., 122, 6883-6900, https://doi.org/10.1002/2017JC012768, 2017. 
Crutzen, P.: Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma, Clim. Change, 77, 211–220, https://doi.org/10.1007/s10584-006-9101-y, 2006. 
Day, J. J., Bamber, J. L., and Valdes, P. J.: The Greenland Ice Sheet's surface mass balance in a seasonally sea ice-free Arctic, J. Geophys. Res.-Earth, 118, 1533–1544, https://doi.org/10.1002/jgrf.20112, 2013. 
Download
Short summary
The climate change conference held in Paris in 2016 made a commitment to limiting global-mean warming since the pre-industrial era to well below 2 °C and to pursue efforts to limit the warming to 1.5 °C. Since global warming is already at 1 °C, the 1.5 °C can only be achieved at considerable cost. It is thus important to assess the risks associated with the higher target. This paper shows that the decline of Arctic sea ice, and associated impacts, can only be halted with the 1.5 °C target.