Articles | Volume 12, issue 10
https://doi.org/10.5194/tc-12-3333-2018
https://doi.org/10.5194/tc-12-3333-2018
Research article
 | 
17 Oct 2018
Research article |  | 17 Oct 2018

A temperature- and stress-controlled failure criterion for ice-filled permafrost rock joints

Philipp Mamot, Samuel Weber, Tanja Schröder, and Michael Krautblatter

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Philipp Mamot on behalf of the Authors (04 Aug 2018)  Author's response   Manuscript 
ED: Publish subject to technical corrections (31 Aug 2018) by Christian Hauck
AR by Philipp Mamot on behalf of the Authors (11 Sep 2018)  Author's response   Manuscript 
Download
Short summary
Most of the observed failures in permafrost-affected alpine rock walls are likely triggered by the mechanical destabilisation of warming bedrock permafrost including ice-filled joints. We present a systematic study of the brittle shear failure of ice and rock–ice contacts along rock joints in a simulated depth ≤ 30 m and at temperatures from −10 to −0.5 °C. Warming and sudden reduction in rock overburden due to the detachment of an upper rock mass lead to a significant drop in shear resistance.