Articles | Volume 12, issue 10
https://doi.org/10.5194/tc-12-3161-2018
https://doi.org/10.5194/tc-12-3161-2018
Review article
 | 
04 Oct 2018
Review article |  | 04 Oct 2018

An assessment of sub-snow GPS for quantification of snow water equivalent

Ladina Steiner, Michael Meindl, Charles Fierz, and Alain Geiger

Related authors

GNSS Radio Occultation Climatologies mapped by Machine Learning and Bayesian Interpolation
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-205,https://doi.org/10.5194/amt-2023-205, 2023
Revised manuscript accepted for AMT
Short summary
Tropospheric water vapor: a comprehensive high-resolution data collection for the transnational Upper Rhine Graben region
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022,https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Deep ice layer formation in an alpine snowpack: monitoring and modeling
Louis Quéno, Charles Fierz, Alec van Herwijnen, Dylan Longridge, and Nander Wever
The Cryosphere, 14, 3449–3464, https://doi.org/10.5194/tc-14-3449-2020,https://doi.org/10.5194/tc-14-3449-2020, 2020
Short summary
The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack
Neige Calonne, Bettina Richter, Henning Löwe, Cecilia Cetti, Judith ter Schure, Alec Van Herwijnen, Charles Fierz, Matthias Jaggi, and Martin Schneebeli
The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020,https://doi.org/10.5194/tc-14-1829-2020, 2020
Short summary
A decade of detailed observations (2008–2018) in steep bedrock permafrost at the Matterhorn Hörnligrat (Zermatt, CH)
Samuel Weber, Jan Beutel, Reto Da Forno, Alain Geiger, Stephan Gruber, Tonio Gsell, Andreas Hasler, Matthias Keller, Roman Lim, Philippe Limpach, Matthias Meyer, Igor Talzi, Lothar Thiele, Christian Tschudin, Andreas Vieli, Daniel Vonder Mühll, and Mustafa Yücel
Earth Syst. Sci. Data, 11, 1203–1237, https://doi.org/10.5194/essd-11-1203-2019,https://doi.org/10.5194/essd-11-1203-2019, 2019
Short summary

Related subject area

Discipline: Snow | Subject: Instrumentation
Measuring prairie snow water equivalent with combined UAV-borne gamma spectrometry and lidar
Phillip Harder, Warren D. Helgason, and John W. Pomeroy
The Cryosphere, 18, 3277–3295, https://doi.org/10.5194/tc-18-3277-2024,https://doi.org/10.5194/tc-18-3277-2024, 2024
Short summary
Brief communication: Testing a portable Bullard-type temperature lance confirms highly spatially heterogeneous sediment temperatures under shallow bodies of water in the Arctic
Frederieke Miesner, William Lambert Cable, Pier Paul Overduin, and Julia Boike
The Cryosphere, 18, 2603–2611, https://doi.org/10.5194/tc-18-2603-2024,https://doi.org/10.5194/tc-18-2603-2024, 2024
Short summary
A random forest approach to quality-checking automatic snow-depth sensor measurements
Giulia Blandini, Francesco Avanzi, Simone Gabellani, Denise Ponziani, Hervé Stevenin, Sara Ratto, Luca Ferraris, and Alberto Viglione
The Cryosphere, 17, 5317–5333, https://doi.org/10.5194/tc-17-5317-2023,https://doi.org/10.5194/tc-17-5317-2023, 2023
Short summary
Brief communication: Comparison of in situ ephemeral snow depth measurements over a mixed-use temperate forest landscape
Holly Proulx, Jennifer M. Jacobs, Elizabeth A. Burakowski, Eunsang Cho, Adam G. Hunsaker, Franklin B. Sullivan, Michael Palace, and Cameron Wagner
The Cryosphere, 17, 3435–3442, https://doi.org/10.5194/tc-17-3435-2023,https://doi.org/10.5194/tc-17-3435-2023, 2023
Short summary
Monitoring snow water equivalent using the phase of RFID signals
Mathieu Le Breton, Éric Larose, Laurent Baillet, Yves Lejeune, and Alec van Herwijnen
The Cryosphere, 17, 3137–3156, https://doi.org/10.5194/tc-17-3137-2023,https://doi.org/10.5194/tc-17-3137-2023, 2023
Short summary

Cited articles

Appel, F., Bach, H., Koch, F., Prasch, M., and Mauser, W.: SNOWSENSE: Using satellite navigation, communication and remote sensing for timely access to high-quality and reliable information on snow, in: the EARSeL Workshop SIG Remote Sensing of Land Ice and Snow, Berne, Switzerland, 3–6 February 2014, 245–262, 2014. a
Beaumont, R.: Hood pressure pillow snow gage, J. Appl. Meteorol., 4, 626–631, 1965. a
Beaumont, R.: Snow accumulation, in: Proceedings of the 34th Annual Western Snow Conference, Seattle, USA, 19–21 April 1966. a, b, c
Boniface, K., Braun, J., McCreight, J., and Nievinski, F.: Comparison of SNODAS to GNSS reflectometry snow depth in the Western United States, Hydrol. Proc., 29, 2425–2437, https://doi.org/10.1002/hyp.10346, 2015. a
Cardellach, E., Fabra, F., Rius, A., Pettinato, S., and Daddio, S.: Characterization of Dry-snow Sub-structure using GNSS Reflected Signals, Remote Sens. Environ., 124, 122–134, 2012. a
Download
Short summary
The amount of water stored in snow cover is of high importance for flood risks, climate change, and early-warning systems. We evaluate the potential of using GPS to estimate the stored water. We use GPS antennas buried underneath the snowpack and develop a model based on the path elongation of the GPS signals while propagating through the snowpack. The method works well over full seasons, including melt periods. Results correspond within 10 % to the state-of-the-art reference data.