Articles | Volume 12, issue 5
https://doi.org/10.5194/tc-12-1579-2018
https://doi.org/10.5194/tc-12-1579-2018
Research article
 | 
03 May 2018
Research article |  | 03 May 2018

Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan

Edward H. Bair, Andre Abreu Calfa, Karl Rittger, and Jeff Dozier

Related authors

Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Chris J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1681,https://doi.org/10.5194/egusphere-2024-1681, 2024
Short summary
The pitfalls of ignoring topography in snow retrievals: a case study with EMIT
Niklas Bohn, Edward H. Bair, Philip G. Brodrick, Nimrod Carmon, Robert O. Green, Thomas H. Painter, and David R. Thompson
EGUsphere, https://doi.org/10.2139/ssrn.4671920,https://doi.org/10.2139/ssrn.4671920, 2024
Short summary
How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023,https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
Evaluation of E3SM land model snow simulations over the western United States
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023,https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets
Timbo Stillinger, Karl Rittger, Mark S. Raleigh, Alex Michell, Robert E. Davis, and Edward H. Bair
The Cryosphere, 17, 567–590, https://doi.org/10.5194/tc-17-567-2023,https://doi.org/10.5194/tc-17-567-2023, 2023
Short summary

Related subject area

Discipline: Snow | Subject: Numerical Modelling
Multi-physics ensemble modelling of Arctic tundra snowpack properties
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Richard Essery, Philip Marsh, Rosamond Tutton, Branden Walker, Matthieu Lafaysse, and David Pritchard
The Cryosphere, 18, 5685–5711, https://doi.org/10.5194/tc-18-5685-2024,https://doi.org/10.5194/tc-18-5685-2024, 2024
Short summary
Modelling snowpack on ice surfaces with the ORCHIDEE land surface model: application to the Greenland ice sheet
Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, Nina Raoult, Xavier Fettweis, and Philippe Conesa
The Cryosphere, 18, 5067–5099, https://doi.org/10.5194/tc-18-5067-2024,https://doi.org/10.5194/tc-18-5067-2024, 2024
Short summary
Exploring the decision-making process in model development: focus on the Arctic snowpack
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024,https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Exploring the potential of forest snow modeling at the tree and snowpack layer scale
Giulia Mazzotti, Jari-Pekka Nousu, Vincent Vionnet, Tobias Jonas, Rafife Nheili, and Matthieu Lafaysse
The Cryosphere, 18, 4607–4632, https://doi.org/10.5194/tc-18-4607-2024,https://doi.org/10.5194/tc-18-4607-2024, 2024
Short summary
Microstructure-based modelling of snow mechanics: experimental evaluation of the cone penetration test
Clémence Herny, Pascal Hagenmuller, Guillaume Chambon, Isabel Peinke, and Jacques Roulle
The Cryosphere, 18, 3787–3805, https://doi.org/10.5194/tc-18-3787-2024,https://doi.org/10.5194/tc-18-3787-2024, 2024
Short summary

Cited articles

Adam, J. C., Clark, E. A., Lettenmaier, D. P., and Wood, E. F.: Correction of global precipitation products for orographic effects, J. Climate, 19, 15–38, https://doi.org/10.1175/JCLI3604.1, 2006.
Bair, E. H., Dozier, J., Davis, R. E., Colee, M. T., and Claffey, K. J.: CUES – A study site for measuring snowpack energy balance in the Sierra Nevada, Front. Earth Sci., 3, 58, https://doi.org/10.3389/feart.2015.00058, 2015.
Bair, E. H., Rittger, K., Davis, R. E., Painter, T. H., and Dozier, J.: Validating reconstruction of snow water equivalent in California's Sierra Nevada using measurements from the NASA Airborne Snow Observatory, Water Resour. Res., 52, 8437–8460, https://doi.org/10.1002/2016WR018704, 2016.
Bair, E. H., Rittger, K., and Dozier, J.: Reconstructed SWE for MODIS tile h23v05, calendar years 2003–2012, data available at: ftp://ftp.snow.ucsb.edu/pub/org/snow/products/reconstruction/h23v05, last access: 1 June 2016.
Barrett, A.: National Operational Hydrologic Remote Sensing Center SNOw Data Assimiliation System (SNODAS) products at NSIDC, National Snow and Ice Data Center, Boulder, Special Report 11, 19, 2003.
Download
Short summary
In Afghanistan, almost no snow measurements exist. Operational estimates use measurements from satellites, but all have limitations. We have developed a satellite-based technique called reconstruction that accurately estimates the snowpack retrospectively. To solve the problem of estimating today's snowpack, we used machine learning, trained on our reconstructed snow estimates, using predictors that are available today. Our results show low errors, demonstrating the utility of this approach.