Articles | Volume 11, issue 2
The Cryosphere, 11, 681–692, 2017
https://doi.org/10.5194/tc-11-681-2017
The Cryosphere, 11, 681–692, 2017
https://doi.org/10.5194/tc-11-681-2017

Research article 08 Mar 2017

Research article | 08 Mar 2017

Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

Kelly M. Brunt et al.

Related authors

Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake depth retrievals
Zachary Fair, Mark Flanner, Kelly M. Brunt, Helen Amanda Fricker, and Alex Gardner
The Cryosphere, 14, 4253–4263, https://doi.org/10.5194/tc-14-4253-2020,https://doi.org/10.5194/tc-14-4253-2020, 2020
Short summary
Temporal and spatial variability in surface roughness and accumulation rate around 88° S from repeat airborne geophysical surveys
Michael Studinger, Brooke C. Medley, Kelly M. Brunt, Kimberly A. Casey, Nathan T. Kurtz, Serdar S. Manizade, Thomas A. Neumann, and Thomas B. Overly
The Cryosphere, 14, 3287–3308, https://doi.org/10.5194/tc-14-3287-2020,https://doi.org/10.5194/tc-14-3287-2020, 2020
Short summary
Radiometric calibration of a non-imaging airborne spectrometer to measure the Greenland ice sheet surface
Christopher J. Crawford, Jeannette van den Bosch, Kelly M. Brunt, Milton G. Hom, John W. Cooper, David J. Harding, James J. Butler, Philip W. Dabney, Thomas A. Neumann, Craig S. Cleckner, and Thorsten Markus
Atmos. Meas. Tech., 12, 1913–1933, https://doi.org/10.5194/amt-12-1913-2019,https://doi.org/10.5194/amt-12-1913-2019, 2019
Short summary
Assessment of altimetry using ground-based GPS data from the 88S Traverse, Antarctica, in support of ICESat-2
Kelly M. Brunt, Thomas A. Neumann, and Christopher F. Larsen
The Cryosphere, 13, 579–590, https://doi.org/10.5194/tc-13-579-2019,https://doi.org/10.5194/tc-13-579-2019, 2019
Short summary
MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development
Kelly M. Brunt, Thomas A. Neumann, Jason M. Amundson, Jeffrey L. Kavanaugh, Mahsa S. Moussavi, Kaitlin M. Walsh, William B. Cook, and Thorsten Markus
The Cryosphere, 10, 1707–1719, https://doi.org/10.5194/tc-10-1707-2016,https://doi.org/10.5194/tc-10-1707-2016, 2016
Short summary

Related subject area

Remote Sensing
Brief communication: Glacier run-off estimation using altimetry-derived basin volume change: case study at Humboldt Glacier, northwest Greenland
Laurence Gray
The Cryosphere, 15, 1005–1014, https://doi.org/10.5194/tc-15-1005-2021,https://doi.org/10.5194/tc-15-1005-2021, 2021
Short summary
Inventory and changes of rock glacier creep speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021,https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Mapping avalanches with satellites – evaluation of performance and completeness
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021,https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Estimating fractional snow cover from passive microwave brightness temperature data using MODIS snow cover product over North America
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere, 15, 835–861, https://doi.org/10.5194/tc-15-835-2021,https://doi.org/10.5194/tc-15-835-2021, 2021
Short summary
Annual and inter-annual variability and trends of albedo of Icelandic glaciers
Andri Gunnarsson, Sigurdur M. Gardarsson, Finnur Pálsson, Tómas Jóhannesson, and Óli G. B. Sveinsson
The Cryosphere, 15, 547–570, https://doi.org/10.5194/tc-15-547-2021,https://doi.org/10.5194/tc-15-547-2021, 2021
Short summary

Cited articles

Bisnath, S. and Gao, Y.: Current state of precise point positioning and future prospects and limitations, in: Observing our changing Earth, Springer Berlin Heidelberg, 615–623, 2009.
Blair, J. and Hofton, M.: Pre-IceBridge LVIS L2 Geolocated Ground Elevation and Return Energy Quartiles, Version 1, NASA NSIDC DAAC, Boulder, Colorado, USA, 2011.
Blair, J. and Hofton, M.: IceBridge LVIS-GH L2 Geolocated Surface Elevation Product, NASA NSIDC DAAC, Boulder, Colorado, USA, 2015.
Blair, J., Rabine, D., and Hofton, M.: The laser vegetation imaging sensor (LVIS): A medium-altitude, digitation-only, airborne laser altimeter for mapping vegetation and topography, ISPRS J. Photogramm., 54, 115–122, 1999.
Download
Short summary
This manuscript presents an analysis of NASA airborne lidar data based on in situ GPS measurements from the interior of the Greenland Ice Sheet. Results show that for two airborne altimeters, surface elevation biases are less than 0.12 m and measurement precisions are 0.09 m or better. The study concludes that two NASA airborne lidars are sufficiently characterized to form part of a satellite data validation strategy, specifically for ICESat-2, scheduled to launch in 2018.