Articles | Volume 11, issue 2
https://doi.org/10.5194/tc-11-681-2017
https://doi.org/10.5194/tc-11-681-2017
Research article
 | 
08 Mar 2017
Research article |  | 08 Mar 2017

Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

Kelly M. Brunt, Robert L. Hawley, Eric R. Lutz, Michael Studinger, John G. Sonntag, Michelle A. Hofton, Lauren C. Andrews, and Thomas A. Neumann

Related authors

Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake depth retrievals
Zachary Fair, Mark Flanner, Kelly M. Brunt, Helen Amanda Fricker, and Alex Gardner
The Cryosphere, 14, 4253–4263, https://doi.org/10.5194/tc-14-4253-2020,https://doi.org/10.5194/tc-14-4253-2020, 2020
Short summary
Temporal and spatial variability in surface roughness and accumulation rate around 88° S from repeat airborne geophysical surveys
Michael Studinger, Brooke C. Medley, Kelly M. Brunt, Kimberly A. Casey, Nathan T. Kurtz, Serdar S. Manizade, Thomas A. Neumann, and Thomas B. Overly
The Cryosphere, 14, 3287–3308, https://doi.org/10.5194/tc-14-3287-2020,https://doi.org/10.5194/tc-14-3287-2020, 2020
Short summary
Radiometric calibration of a non-imaging airborne spectrometer to measure the Greenland ice sheet surface
Christopher J. Crawford, Jeannette van den Bosch, Kelly M. Brunt, Milton G. Hom, John W. Cooper, David J. Harding, James J. Butler, Philip W. Dabney, Thomas A. Neumann, Craig S. Cleckner, and Thorsten Markus
Atmos. Meas. Tech., 12, 1913–1933, https://doi.org/10.5194/amt-12-1913-2019,https://doi.org/10.5194/amt-12-1913-2019, 2019
Short summary
Assessment of altimetry using ground-based GPS data from the 88S Traverse, Antarctica, in support of ICESat-2
Kelly M. Brunt, Thomas A. Neumann, and Christopher F. Larsen
The Cryosphere, 13, 579–590, https://doi.org/10.5194/tc-13-579-2019,https://doi.org/10.5194/tc-13-579-2019, 2019
Short summary
MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development
Kelly M. Brunt, Thomas A. Neumann, Jason M. Amundson, Jeffrey L. Kavanaugh, Mahsa S. Moussavi, Kaitlin M. Walsh, William B. Cook, and Thorsten Markus
The Cryosphere, 10, 1707–1719, https://doi.org/10.5194/tc-10-1707-2016,https://doi.org/10.5194/tc-10-1707-2016, 2016
Short summary

Related subject area

Remote Sensing
Inland migration of near-surface crevasses in the Amundsen Sea Sector, West Antarctica
Andrew O. Hoffman, Knut Christianson, Ching-Yao Lai, Ian Joughin, Nicholas Holschuh, Elizabeth Case, Jonathan Kingslake, and the GHOST science team
The Cryosphere, 19, 1353–1372, https://doi.org/10.5194/tc-19-1353-2025,https://doi.org/10.5194/tc-19-1353-2025, 2025
Short summary
Do we still need reflectance? From radiance to snow properties in mountainous terrain: a case study with the EMIT imaging spectrometer
Niklas Bohn, Edward H. Bair, Philip G. Brodrick, Nimrod Carmon, Robert O. Green, Thomas H. Painter, and David R. Thompson
The Cryosphere, 19, 1279–1302, https://doi.org/10.5194/tc-19-1279-2025,https://doi.org/10.5194/tc-19-1279-2025, 2025
Short summary
Greenland Ice Sheet surface roughness from Ku- and Ka-band radar altimetry surface echo strengths
Kirk M. Scanlan, Anja Rutishauser, and Sebastian B. Simonsen
The Cryosphere, 19, 1221–1239, https://doi.org/10.5194/tc-19-1221-2025,https://doi.org/10.5194/tc-19-1221-2025, 2025
Short summary
Novel methods to study sea ice deformation, linear kinematic features and coherent dynamic clusters from imaging remote sensing data
Polona Itkin
The Cryosphere, 19, 1135–1151, https://doi.org/10.5194/tc-19-1135-2025,https://doi.org/10.5194/tc-19-1135-2025, 2025
Short summary
InSAR-derived seasonal subsidence reflects spatial soil moisture patterns in Arctic lowland permafrost regions
Barbara Widhalm, Annett Bartsch, Tazio Strozzi, Nina Jones, Artem Khomutov, Elena Babkina, Marina Leibman, Rustam Khairullin, Mathias Göckede, Helena Bergstedt, Clemens von Baeckmann, and Xaver Muri
The Cryosphere, 19, 1103–1133, https://doi.org/10.5194/tc-19-1103-2025,https://doi.org/10.5194/tc-19-1103-2025, 2025
Short summary

Cited articles

Bisnath, S. and Gao, Y.: Current state of precise point positioning and future prospects and limitations, in: Observing our changing Earth, Springer Berlin Heidelberg, 615–623, 2009.
Blair, J. and Hofton, M.: Pre-IceBridge LVIS L2 Geolocated Ground Elevation and Return Energy Quartiles, Version 1, NASA NSIDC DAAC, Boulder, Colorado, USA, 2011.
Blair, J. and Hofton, M.: IceBridge LVIS-GH L2 Geolocated Surface Elevation Product, NASA NSIDC DAAC, Boulder, Colorado, USA, 2015.
Blair, J., Rabine, D., and Hofton, M.: The laser vegetation imaging sensor (LVIS): A medium-altitude, digitation-only, airborne laser altimeter for mapping vegetation and topography, ISPRS J. Photogramm., 54, 115–122, 1999.
Download
Short summary
This manuscript presents an analysis of NASA airborne lidar data based on in situ GPS measurements from the interior of the Greenland Ice Sheet. Results show that for two airborne altimeters, surface elevation biases are less than 0.12 m and measurement precisions are 0.09 m or better. The study concludes that two NASA airborne lidars are sufficiently characterized to form part of a satellite data validation strategy, specifically for ICESat-2, scheduled to launch in 2018.
Share