Articles | Volume 11, issue 5
https://doi.org/10.5194/tc-11-2033-2017
https://doi.org/10.5194/tc-11-2033-2017
Research article
 | 
04 Sep 2017
Research article |  | 04 Sep 2017

Ice bridges and ridges in the Maxwell-EB sea ice rheology

Véronique Dansereau, Jérôme Weiss, Pierre Saramito, Philippe Lattes, and Edmond Coche

Related authors

SWIIFT v0.10: a numerical model of wave-induced sea ice breakup based on an energy criterion
Nicolas Guillaume Alexandre Mokus, Véronique Dansereau, Guillaume Boutin, Jean-Pierre Auclair, and Alexandre Tlili
EGUsphere, https://doi.org/10.5194/egusphere-2025-1831,https://doi.org/10.5194/egusphere-2025-1831, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Multivariate state and parameter estimation with data assimilation applied to sea-ice models using a Maxwell elasto-brittle rheology
Yumeng Chen, Polly Smith, Alberto Carrassi, Ivo Pasmans, Laurent Bertino, Marc Bocquet, Tobias Sebastian Finn, Pierre Rampal, and Véronique Dansereau
The Cryosphere, 18, 2381–2406, https://doi.org/10.5194/tc-18-2381-2024,https://doi.org/10.5194/tc-18-2381-2024, 2024
Short summary
Deep learning subgrid-scale parametrisations for short-term forecasting of sea-ice dynamics with a Maxwell elasto-brittle rheology
Tobias Sebastian Finn, Charlotte Durand, Alban Farchi, Marc Bocquet, Yumeng Chen, Alberto Carrassi, and Véronique Dansereau
The Cryosphere, 17, 2965–2991, https://doi.org/10.5194/tc-17-2965-2023,https://doi.org/10.5194/tc-17-2965-2023, 2023
Short summary
A dynamical core based on a discontinuous Galerkin method for higher-order finite-element sea ice modeling
Thomas Richter, Véronique Dansereau, Christian Lessig, and Piotr Minakowski
Geosci. Model Dev., 16, 3907–3926, https://doi.org/10.5194/gmd-16-3907-2023,https://doi.org/10.5194/gmd-16-3907-2023, 2023
Short summary

Related subject area

Sea Ice
Spring 2021 sea ice transport in the southern Beaufort Sea occurred during coastal-lead opening events
MacKenzie E. Jewell, Jennifer K. Hutchings, and Angela C. Bliss
The Cryosphere, 19, 1413–1430, https://doi.org/10.5194/tc-19-1413-2025,https://doi.org/10.5194/tc-19-1413-2025, 2025
Short summary
National Weather Service Alaska Sea Ice Program: gridded ice concentration maps for the Alaskan Arctic
Astrid Pacini, Michael Steele, and Mary-Beth Schreck
The Cryosphere, 19, 1391–1411, https://doi.org/10.5194/tc-19-1391-2025,https://doi.org/10.5194/tc-19-1391-2025, 2025
Short summary
Estimation of duration and its changes in Lagrangian observations relying on ice floes in the Arctic Ocean utilizing sea ice motion product
Fanyi Zhang, Ruibo Lei, Meng Qu, Na Li, Ying Chen, and Xiaoping Pang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2723,https://doi.org/10.5194/egusphere-2024-2723, 2024
Short summary
Seasonal evolution of the sea ice floe size distribution in the Beaufort Sea from 2 decades of MODIS data
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024,https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary
Suitability of the CICE sea ice model for seasonal prediction and positive impact of CryoSat-2 ice thickness initialization
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024,https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary

Cited articles

Amitrano, D., Grasso, J.-R., and Hantz, D.: From diffuse to localised damage through elastic interaction, Geophys. Res. Lett., 26, 2109–2112, 1999.
Aranson, I. S. and Tsimring, L. S.: Patterns and collective behavior in granular media: Theoretical concepts, Rev. Mod. Phys., 78, 641–692, https://doi.org/10.1103/RevModPhys.78.641, 2006.
Barber, D., Hanesiak, J., Chan, W., and Piwowar, J.: Sea–ice and meteorological conditions in Northern Baffin Bay and the North Water polynya between 1979 and 1996, Atmos. Ocean, 39, 343–359, https://doi.org/10.1080/07055900.2001.9649685, 2001.
Bitz, C. M., Holland, M. M., Weaver, A. J., and Eby, M.: Simulating the ice-thickness distribution in a coupled climate model, J. Geophys. Res.-Oceans, 106, 2441–2463, https://doi.org/10.1029/1999JC000113, 2001.
Bouillon, S. and Rampal, P.: Presentation of the dynamical core of neXtSIM a new sea ice model, Ocean Model., 91, 23–37, https://doi.org/10.1016/j.ocemod.2015.04.005, 2015.
Download
Short summary
A new mechanical framework is used to model the drift of sea ice in a narrow channel between Greenland and Ellesmere Island. It is able to reproduce its main features : curved cracks, ice “bridges” that stop the flow of ice for several months of the year and some thick, strongly localized ridged ice. The simulations suggest that a mechanical weakening of the sea ice cover can shorten the lifespan of ice bridges and result in an increased export of ice through the narrow channels of the Arctic.
Share