Articles | Volume 11, issue 4
The Cryosphere, 11, 1835–1850, 2017
https://doi.org/10.5194/tc-11-1835-2017
The Cryosphere, 11, 1835–1850, 2017
https://doi.org/10.5194/tc-11-1835-2017

Research article 07 Aug 2017

Research article | 07 Aug 2017

Open-source sea ice drift algorithm for Sentinel-1 SAR imagery using a combination of feature tracking and pattern matching

Stefan Muckenhuber and Stein Sandven

Related authors

Operational algorithm for ice–water classification on dual-polarized RADARSAT-2 images
Natalia Zakhvatkina, Anton Korosov, Stefan Muckenhuber, Stein Sandven, and Mohamed Babiker
The Cryosphere, 11, 33–46, https://doi.org/10.5194/tc-11-33-2017,https://doi.org/10.5194/tc-11-33-2017, 2017
Short summary
Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data
S. Muckenhuber, F. Nilsen, A. Korosov, and S. Sandven
The Cryosphere, 10, 149–158, https://doi.org/10.5194/tc-10-149-2016,https://doi.org/10.5194/tc-10-149-2016, 2016
Short summary

Related subject area

Sea Ice
Surface-based Ku- and Ka-band polarimetric radar for sea ice studies
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020,https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations
Leandro Ponsoni, François Massonnet, David Docquier, Guillian Van Achter, and Thierry Fichefet
The Cryosphere, 14, 2409–2428, https://doi.org/10.5194/tc-14-2409-2020,https://doi.org/10.5194/tc-14-2409-2020, 2020
Short summary
Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, and Alvaro Ivanoff
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-174,https://doi.org/10.5194/tc-2020-174, 2020
Revised manuscript accepted for TC
Satellite-based sea ice thickness changes in the Laptev Sea from 2002 to 2017: comparison to mooring observations
H. Jakob Belter, Thomas Krumpen, Stefan Hendricks, Jens Hoelemann, Markus A. Janout, Robert Ricker, and Christian Haas
The Cryosphere, 14, 2189–2203, https://doi.org/10.5194/tc-14-2189-2020,https://doi.org/10.5194/tc-14-2189-2020, 2020
Short summary
Modeling the annual cycle of daily Antarctic sea ice extent
Mark S. Handcock and Marilyn N. Raphael
The Cryosphere, 14, 2159–2172, https://doi.org/10.5194/tc-14-2159-2020,https://doi.org/10.5194/tc-14-2159-2020, 2020
Short summary

Cited articles

Berg, A. and Eriksson, L. E. B.: Investigation of a Hybrid Algorithm for Sea Ice Drift Measurements Using Synthetic Aperture Radar Images, IEEE T. Geosci. Remote, 52, 5023–5033, 2014.
Calonder, M., Lepetit, V., Strecha, C., and Fua, P.: BRIEF: Binary Robust Independent Elementary Features, CVLab, EPFL, Lausanne, Switzerland, 2010.
ESA: Sentinel-1 ESA's Radar Observatory Mission for GMES Operational Services, ESA Communications, SP-1322/1, ESA, the Netherlands, 2012.
Hollands, T.: Motion tracking of sea ice with SAR satellite data, dissertaiton, Section 2: Estimation of motion from images, University Bremen, Bremen, 2012.
Hollands, T. and Dierking, W.: Performance of a multiscale correlation algorithm for the estimation of sea-ice drift from SAR images: initial results, Ann. Glaciol., 52, 311–317, 2011.
Download
Short summary
Sea ice drift has a strong impact on sea ice distribution on different temporal and spatial scales. An open-source sea ice drift algorithm for Sentinel-1 satellite imagery is introduced based on the combination of feature tracking and pattern matching. The algorithm is designed to utilise the respective advantages of the two approaches and allows drift calculation at user-defined locations.