Articles | Volume 19, issue 12
https://doi.org/10.5194/tc-19-6629-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-6629-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: Tropical glaciers on Puncak Jaya (Irian Jaya/West Papua, Indonesia) close to extinction
Institute of Geography, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Wetterkreuz 15, Germany
Thomas Mölg
Institute of Geography, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Wetterkreuz 15, Germany
Christian Sommer
Institute of Geography, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Wetterkreuz 15, Germany
Related authors
No articles found.
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Maria Kappelsberger, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
The Cryosphere, 19, 1789–1824, https://doi.org/10.5194/tc-19-1789-2025, https://doi.org/10.5194/tc-19-1789-2025, 2025
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean processes related to the mass balance of glaciers in northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79° N Glacier. We find that together, the different in situ and remote sensing observations and model simulations reveal a consistent picture of a coupled atmosphere–ice sheet–ocean system that has entered a phase of major change.
Katrina Lutz, Lily Bever, Christian Sommer, Thorsten Seehaus, Angelika Humbert, Mirko Scheinert, and Matthias Braun
The Cryosphere, 18, 5431–5449, https://doi.org/10.5194/tc-18-5431-2024, https://doi.org/10.5194/tc-18-5431-2024, 2024
Short summary
Short summary
The estimation of the amount of water found within supraglacial lakes is important for understanding how much water is lost from glaciers each year. Here, we develop two new methods for estimating supraglacial lake volume that can be easily applied on a large scale. Furthermore, we compare these methods to two previously developed methods in order to determine when it is best to use each method. Finally, three of these methods are applied to peak melt dates over an area in Northeast Greenland.
Thomas Mölg, Jan C. Schubert, Annette Debel, Steffen Höhnle, Kathy Steppe, Sibille Wehrmann, and Achim Bräuning
Geosci. Commun., 7, 215–225, https://doi.org/10.5194/gc-7-215-2024, https://doi.org/10.5194/gc-7-215-2024, 2024
Short summary
Short summary
We examine the understanding of weather and climate impacts on forest health in high school students. Climate physics, tree ring science, and educational research collaborate to provide an online platform that captures the students’ observations, showing they translate the measured weather and basic tree responses well. However, students hardly ever detect the causal connections. This result will help refine future classroom concepts and public climate change communication on changing forests.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Annelies Voordendag, Brigitta Goger, Rainer Prinz, Tobias Sauter, Thomas Mölg, Manuel Saigger, and Georg Kaser
The Cryosphere, 18, 849–868, https://doi.org/10.5194/tc-18-849-2024, https://doi.org/10.5194/tc-18-849-2024, 2024
Short summary
Short summary
Wind-driven snow redistribution affects glacier mass balance. A case study of Hintereisferner glacier in Austria used high-resolution observations and simulations to model snow redistribution. Simulations matched observations, showing the potential of the model for studying snow redistribution on other mountain glaciers.
Thorsten Seehaus, Christian Sommer, Thomas Dethinne, and Philipp Malz
The Cryosphere, 17, 4629–4644, https://doi.org/10.5194/tc-17-4629-2023, https://doi.org/10.5194/tc-17-4629-2023, 2023
Short summary
Short summary
Existing mass budget estimates for the northern Antarctic Peninsula (>70° S) are affected by considerable limitations. We carried out the first region-wide analysis of geodetic mass balances throughout this region (coverage of 96.4 %) for the period 2013–2017 based on repeat pass bi-static TanDEM-X acquisitions. A total mass budget of −24.1±2.8 Gt/a is revealed. Imbalanced high ice discharge, particularly at former ice shelf tributaries, is the main driver of overall ice loss.
Christian Sommer, Johannes J. Fürst, Matthias Huss, and Matthias H. Braun
The Cryosphere, 17, 2285–2303, https://doi.org/10.5194/tc-17-2285-2023, https://doi.org/10.5194/tc-17-2285-2023, 2023
Short summary
Short summary
Knowledge on the volume of glaciers is important to project future runoff. Here, we present a novel approach to reconstruct the regional ice thickness distribution from easily available remote-sensing data. We show that past ice thickness, derived from spaceborne glacier area and elevation datasets, can constrain the estimated ice thickness. Based on the unique glaciological database of the European Alps, the approach will be most beneficial in regions without direct thickness measurements.
Jonathan P. Conway, Jakob Abermann, Liss M. Andreassen, Mohd Farooq Azam, Nicolas J. Cullen, Noel Fitzpatrick, Rianne H. Giesen, Kirsty Langley, Shelley MacDonell, Thomas Mölg, Valentina Radić, Carleen H. Reijmer, and Jean-Emmanuel Sicart
The Cryosphere, 16, 3331–3356, https://doi.org/10.5194/tc-16-3331-2022, https://doi.org/10.5194/tc-16-3331-2022, 2022
Short summary
Short summary
We used data from automatic weather stations on 16 glaciers to show how clouds influence glacier melt in different climates around the world. We found surface melt was always more frequent when it was cloudy but was not universally faster or slower than under clear-sky conditions. Also, air temperature was related to clouds in opposite ways in different climates – warmer with clouds in cold climates and vice versa. These results will help us improve how we model past and future glacier melt.
Christian Sommer, Thorsten Seehaus, Andrey Glazovsky, and Matthias H. Braun
The Cryosphere, 16, 35–42, https://doi.org/10.5194/tc-16-35-2022, https://doi.org/10.5194/tc-16-35-2022, 2022
Short summary
Short summary
Arctic glaciers have been subject to extensive warming due to global climate change, yet their contribution to sea level rise has been relatively small in the past. In this study we provide mass changes of most glaciers of the Russian High Arctic (Franz Josef Land, Severnaya Zemlya, Novaya Zemlya). We use TanDEM-X satellite measurements to derive glacier surface elevation changes. Our results show an increase in glacier mass loss and a sea level rise contribution of 0.06 mm/a (2010–2017).
Cited articles
Airbus Defence and Space Intelligence: Pléiades Imagery: User Guide, https://storage.googleapis.com/p-ssp-iep-prod-8ff-strapi-uploads/210415_Airbus_Pleiades_Imagery_user_guide_be12b8f35b/210415_Airbus_Pleiades_Imagery_user_guide_be12b8f35b.pdf (last access: 26 January 2025), 2021.
Allison, I.: Morphology and dynamics of the tropical glaciers of Irian Jaya, Zeitschrift für Gletscherkunde und Glazialgeologie, 10, 129–152, 1974.
Allison, I. and Kruss, P.: Estimation of Recent Climate Change in Irian Jaya by Numerical Modeling of Its Tropical Glaciers, Arctic Alpine Res., 9, 49–60, https://doi.org/10.2307/1550408, 1977.
Allison, I. and Peterson, J. A.: Ice areas on Mt. Jaya: Their extent and recent history, in: The equatorial glaciers of New Guinea: Results of the 1971 - 1973 Australian Univ., expeditions to Irian Jaya, survey, glaciology, meteorology, biology and palaeoenvironments, edited by: Hope, G. S., Peterson, J. A., Radok, U., and Allison, I., Balkema, Rotterdam, 27–38, ISBN 9061910129, 1976.
Anderson, E. G.: Topographic survey and cartography, in: The equatorial glaciers of New Guinea: Results of the 1971 - 1973 Australian Univ., expeditions to Irian Jaya, survey, glaciology, meteorology, biology and palaeoenvironments, edited by: Hope, G. S., Peterson, J. A., Radok, U., and Allison, I., Balkema, Rotterdam, 15–26, ISBN 9061910129, 1976.
Ballard, C.: The Colijn Expedition to the Carstensz Peaks (1936), in: Race to the snow: Photography and the exploration of Dutch New Guinea, 1907-1936, edited by: Ballard, C., Vink, S., and Ploeg, A., Amsterdam, 35–42, ISBN 9068325116, 2001.
Bowler, J. M., Hope, G. S., Jennings, J. N., Singh, G., and Walker, D.: Late Quaternary Climates of Australia and New Guinea, Quaternary Res., 6, 359–394, https://doi.org/10.1016/0033-5894(67)90003-8, 1976.
Brown, I. M.: Quaternary glaciations of New Guinea, Quaternary Sci. Rev., 9, 273–280, https://doi.org/10.1016/0277-3791(90)90022-3, 1990.
Carrivick, J. L., Davies, M., Wilson, R., Davies, B. J., Gribbin, T., King, O., Rabatel, A., García, J.-L., and Ely, J. C.: Accelerating Glacier Area Loss Across the Andes Since the Little Ice Age, Geophys. Res. Lett., 51, https://doi.org/10.1029/2024GL109154, 2024.
Coljin, A. H.: Naar de eeuwige sneeuw van tropisch Nederland, Amsterdam, 1937.
Dozy, J.: Eine Gletscherwelt in Niederländisch-Neuguinea, Zeitschrift für Gletscherkunde, für Eiszeitforschung und Geschichte des Klimas, XXVI, 45–51, 1938.
Dozy, J., Erdman, D., Jong, W., Krol, G., and Schouten, C.: Geological results of the Carstensz Expedition 1936, Leidse Geologische Mededelingen, 11, 68–131, 1939.
Fountain, A. G., Glenn, B., and Mcneil, C.: Inventory of glaciers and perennial snowfields of the conterminous USA, Earth Syst. Sci. Data, 15, 4077–4104, https://doi.org/10.5194/essd-15-4077-2023, 2023.
Fox-Kemper, B., Hewitt, H., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S., Edwards, T., Golledge, N., Hemer, M., Kopp, R., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I., Ruiz, L., Sallée, J.-B., Slangen, A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021 – The Physical Science Basis, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
Gorin, A. L., Shakun, J. D., Jones, A. G., Kennedy, T. M., Marcott, S. A., Goehring, B. M., Zoet, L. K., Jomelli, V., Bromley, G. R. M., Mateo, E. I., Mark, B. G., Rodbell, D. T., Gilbert, A., and Caffee, M. W.: Recent tropical Andean glacier retreat is unprecedented in the Holocene, Science, 385, 517–521, https://doi.org/10.1126/science.adg7546, 2024.
Harrer, H.: Ich komme aus der Steinzeit: Ewiges Eis im Dschungel der Südsee, Berlin/Frankfurt am Main/Wien, 1963.
Hastenrath, S. and Kruss, P. D.: The role of radiation geometry in the climate response of mount kenya's glaciers, part 2: Sloping versus horizontal surfaces, J. Climatol., 8, 629–639, https://doi.org/10.1002/joc.3370080606, 1988.
Hinzmann, A., Mölg, T., Braun, M., Cullen, N. J., Hardy, D. R., Kaser, G., and Prinz, R.: Tropical glacier loss in East Africa: recent areal extents on Kilimanjaro, Mount Kenya, and in the Rwenzori Range from high-resolution remote sensing data, Environ. Res.: Climate, 3, 11003, https://doi.org/10.1088/2752-5295/ad1fd7, 2024.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., and Steltzer, H.: High Mountain Areas, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge, New York, NY, 131–202, https://doi.org/10.1017/9781009157964.004, 2022.
Hope, G. S.: Mt. Jaya: The area and its exploration, in: The equatorial glaciers of New Guinea: Results of the 1971 - 1973 Australian Univ., expeditions to Irian Jaya, survey, glaciology, meteorology, biology and palaeoenvironments, edited by: Hope, G. S., Peterson, J. A., Radok, U., and Allison, I., Balkema, Rotterdam, 1–14, ISBN 9061910129, 1976.
Hope, G. S. and Peterson, J. A.: Palaoenvironments, in: The equatorial glaciers of New Guinea: Results of the 1971 - 1973 Australian Univ., expeditions to Irian Jaya, survey, glaciology, meteorology, biology and palaeoenvironments, edited by: Hope, G. S., Peterson, J. A., Radok, U., and Allison, I., Balkema, Rotterdam, 173–206, ISBN 9061910129, 1976.
Hope, G. S., Peterson, J. A., Radok, U., and Allison, I. (Eds.): The equatorial glaciers of New Guinea: Results of the 1971 - 1973 Australian Univ., expeditions to Irian Jaya, survey, glaciology, meteorology, biology and palaeoenvironments, Balkema, Rotterdam, ISBN 9061910129, 1976.
Ibel, D., Mölg, T., and Sommer, C.: Surveying tropical glacier change on Puncak Jaya (Irian Jaya/West Papua, Indonesia) in recent years using multispectral high-resolution satellite imagery, publishing updated map of change 1850-2024, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.979847, 2025.
Kaser, G. and Osmaston, H.: Tropical glaciers, International hydrology series, Cambridge, https://doi.org/10.3189/172756503781830782, 2002.
Kaser, G., Mölg, T., Cullen, N. J., Hardy, D. R., and Winkler, M.: Is the decline of ice on Kilimanjaro unprecedented in the Holocene?, The Holocene, 20, 1079–1091, https://doi.org/10.1177/0959683610369498, 2010.
Kincaid, J. L.: An assessment of regional climate trends and changes to the Mt. Jaya glaciers of Irian Jaya, Master thesis, Texas A&M University, https://hdl.handle.net/1969.1/5804 (last access: 26 January 2025), 2007.
Klein, A. G. and Kincaid, J. L.: Retreat of glaciers on Puncak Jaya, Irian Jaya, determined from 2000 and 2002 IKONOS satellite images, J. Glaciol., 52, 65–79, https://doi.org/10.3189/172756506781828818, 2006.
Le Roux, C.: De Bergpapoea's van Nieuw-Guinea en hun woongebied: Eerste Deel, Koninklijk Nederlandsch Aardrijkskundig Genootschap, OCLC number: 37836037, 1948.
Linsbauer, A., Huss, M., Hodel, E., Bauder, A., Fischer, M., Weidmann, Y., Bärtschi, H., and Schmassmann, E.: The New Swiss Glacier Inventory SGI2016: From a Topographical to a Glaciological Dataset, Front. Earth Sci., 9, https://doi.org/10.3389/feart.2021.704189, 2021.
Löffler, E.: Neuester Stand der Quartärforschung in Neuguinea, Eiszeitalter und Gegenwart, 30, 109–123, 1980.
Mölg, T. and Kaser, G.: A new approach to resolving climate-cryosphere relations: Downscaling climate dynamics to glacier-scale mass and energy balance without statistical scale linking, J. Geophys. Res., 116, https://doi.org/10.1029/2011JD015669, 2011.
Mölg, T., Cullen, N. J., Hardy, D. R., Winkler, M., and Kaser, G.: Quantifying Climate Change in the Tropical Midtroposphere over East Africa from Glacier Shrinkage on Kilimanjaro, J. Climate, 22, 4162–4181, https://doi.org/10.1175/2009JCLI2954.1, 2009.
Mölg, T., Hardy, D. R., Collier, E., Kropač, E., Schmid, C., Cullen, N. J., Kaser, G., Prinz, R., and Winkler, M.: Mesoscale atmospheric circulation controls of local meteorological elevation gradients on Kersten Glacier near Kilimanjaro summit, Earth Syst. Dynam., 11, 653–672, https://doi.org/10.5194/esd-11-653-2020, 2020.
Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S. P., Konovalov, V., Le Bris, R., Mölg, N., Nosenko, G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer, K., Steffen, S., and Winsvold, S.: On the accuracy of glacier outlines derived from remote-sensing data, Ann. Glaciol., 54, 171–182, https://doi.org/10.3189/2013AoG63A296, 2013.
Paul, F., Rastner, P., Azzoni, R. S., Diolaiuti, G., Fugazza, D., Le Bris, R., Nemec, J., Rabatel, A., Ramusovic, M., Schwaizer, G., and Smiraglia, C.: Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2, Earth Syst. Sci. Data, 12, 1805–1821, https://doi.org/10.5194/essd-12-1805-2020, 2020.
Permana, D. S., Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Nicolas, J. P., Bolzan, J. F., Bird, B. W., Mikhalenko, V. N., Gabrielli, P., Zagorodnov, V., Mountain, K. R., Schotterer, U., Hanggoro, W., Habibie, M. N., Kaize, Y., Gunawan, D., Setyadi, G., Susanto, R. D., Fernández, A., and Mark, B. G.: Disappearance of the last tropical glaciers in the Western Pacific Warm Pool (Papua, Indonesia) appears imminent, P. Natl. Acad. Sci. USA, 116, 26382–26388, https://doi.org/10.1073/pnas.1822037116, 2019.
Permana, D. S.: Reconstruction of Tropical Pacific Climate Variability from Papua Ice Cores, Indonesia, PhD thesis, Ohio State University, 2015.
Permana, D. S.: Climate, precipitation isotopic composition and tropical ice core analysis of Papua, Indonesia, Master thesis, Ohio State University, 2011.
Peterson, J. A. and Peterson, L. F.: Ice retreat from the Neoglacial maxima in the Puncak Jayakesuma area, Republic of Indonesia, Zeitschrift für Gletscherkunde und Glazialgeologie, 30, 1–9, 1994.
Peterson, J. A., Hope, G. S., and Mitton, R.: Recession of snow and ice fields of Irian Jaya, Republic of Indonesia, Zeitschrift für Gletscherkunde und Glazialgeologie, 9, 73–87, 1973.
Planet Labs PBC: Planet Application Program Interface: In Space for Life on Earth, https://api.planet.com (last access: 26 January 2025), 2018.
Planet Labs PBC: Planet Imagery Product Specifications, 2023.
Prentice, M. L. and Glidden, S.: Glacier crippling and the rise of the snowline in western New Guinea (Papua Province, Indonesia) from 1972 to 2000, in: Altered Ecologies: Fire, climate and human influence on terrestrial landscapes: Terra Australis 32, edited by: Haberle, S., Prebble, M., and Stevenson, J., ANU Press, Canberra, 457–471, ISBN 9781921666803, 2010.
Prentice, M. L. and Hope, G. S.: Climate of Papua, in: The Ecology of Papua: Part One, edited by: Marshall, A. J. and Beehler, B. M., Periplus Editions (HK) Ltd., New York, 177–196, ISBN 978-1-4629-0679-6, 2007.
Prentice, M. L., Hope, G. S., Peterson, J. A., and Barrows, T. T.: The Glaciation of the South-East Asian Equatorial Region, in: Quaternary Glaciations - Extent and Chronology: A Closer Look, Vol. 15, edited by: Ehlers, J., Gibbard, P. L., and Hughes, P. D., Elsevier B.V., 1023–1036, https://doi.org/10.1016/B978-0-444-53447-7.00073-8, 2011.
Supari, Tangang, F., Juneng, L., and Aldrian, E.: Observed changes in extreme temperature and precipitation over Indonesia, Int. J. Climatol., 37, 1979–1997, https://doi.org/10.1002/joc.4829, 2017.
Temple, P.: Nawok!: The New Zealand Expedition to New Guinea's highest mountains, London, J.M. Dent, London, OCLC number: 834920071, 1962.
Turpo Cayo, E. Y., Borja, M. O., Espinoza-Villar, R., Moreno, N., Camargo, R., Almeida, C., Hopfgartner, K., Yarleque, C., and Souza, C. M.: Mapping Three Decades of Changes in the Tropical Andean Glaciers Using Landsat Data Processed in the Earth Engine, Remote Sensing, 14, 1–21, https://doi.org/10.3390/rs14091974, 2022.
van Ufford, A. Q. and Sedgwick, P.: Recession of the equatorial Puncak Jaya glaciers (∼ 1825 to 1995), Irian Jaya (Western New Guinea), Indonesia, Zeitschrift für Gletscherkunde und Glazialgeologie, 34, 131–140, 1998.
Wollaston, A. F. R.: An Expedition to Dutch New Guinea, The Geographical Journal, 43, 248–268, 1914.
World Glacier Monitoring Service WGMS: Latest glacier mass balance data, https://wgms.ch/latest-glacier-mass-balance-data/ (last access: 10 October 2025), 2024.
World Meteorological Organization: State of the Climate in the South-West-Pacific, WMO-No. 1324, ISBN 978-92-63-11324-5, 2022.
Short summary
As the majority of (tropical) glaciers retreat on a global scale, we analysed area changes of the Puncak Jaya glaciers in South East Asia on West Papua, Indonesia, using high resolution optical satellite imagery, supported by historical glacier accounts. The results show a decrease of total glacier surface area by more than 99 % since 1850 and by ~65 % since the last survey in 2018, with glacier area (in 2024) amounting to 0.165 km2 ± 5 %. Puncak Jaya glaciers will likely disappear around 2030.
As the majority of (tropical) glaciers retreat on a global scale, we analysed area changes of...