Articles | Volume 19, issue 11
https://doi.org/10.5194/tc-19-5423-2025
https://doi.org/10.5194/tc-19-5423-2025
Research article
 | 
06 Nov 2025
Research article |  | 06 Nov 2025

Estimation of the state and parameters in ice sheet model using an ensemble Kalman filter and Observing System Simulation Experiments

Youngmin Choi, Alek Petty, Denis Felikson, and Jonathan Poterjoy

Related authors

The Greenland Ice Sheet Large Ensemble (GrISLENS): simulating the future of Greenland under climate variability
Vincent Verjans, Alexander A. Robel, Lizz Ultee, Helene Seroussi, Andrew F. Thompson, Lars Ackermann, Youngmin Choi, and Uta Krebs-Kanzow
The Cryosphere, 19, 3749–3783, https://doi.org/10.5194/tc-19-3749-2025,https://doi.org/10.5194/tc-19-3749-2025, 2025
Short summary
Impact of time-dependent data assimilation on ice flow model initialization and projections: a case study of Kjer Glacier, Greenland
Youngmin Choi, Helene Seroussi, Mathieu Morlighem, Nicole-Jeanne Schlegel, and Alex Gardner
The Cryosphere, 17, 5499–5517, https://doi.org/10.5194/tc-17-5499-2023,https://doi.org/10.5194/tc-17-5499-2023, 2023
Short summary

Cited articles

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed: A community facility, Bull. Am. Meteorol. Soc., 90, 1283–1296, 2009. a, b, c, d
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001. a, b, c
Anderson, J. L.: An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus A: Dynamic meteorology and oceanography, 59, 210–224, 2007. a
Arnold Jr., C. P. and Dey, C. H.: Observing-systems simulation experiments: Past, present, and future, Bull. Am. Meteorol. Soc., 67, 687–695, 1986. a
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a
Download
Short summary
We combined numerical models with satellite observations using the ensemble Kalman filter to improve predictions of glacier states and their basal conditions. Our simulations show that incorporating more data generally improves prediction accuracy. We also tested different types of data and found that the high-resolution observations provide the greatest improvements. This method can help guide the design of future observing systems and improve long-term projections of ice sheet change.
Share