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Abstract. Better constraining the current and future evo-
lution of Earth’s ice sheets using physical process models
is essential for improving our understanding of future sea
level rise. Data assimilation is a method that combines mod-
els with observations to improve current estimates of model
states and parameters, leveraging the information and un-
certainties inherent in both models and observations. In this
study, we present an ensemble Kalman filter-based data as-
similation (DA) framework for ice sheet modeling, aiming
to better constrain the model state and key parameters from
a single semi-idealized glacier domain. Through a synthetic
twin experiment, we show that the ensemble DA method ef-
fectively recovers basal conditions and the model state after a
few assimilation cycles. Assimilating more observations im-
proves the accuracy of these estimates, thereby improving
the model’s projection capabilities. We also utilize Observ-
ing System Simulation Experiments (OSSEs) to explore the
capabilities of the ensemble DA framework to assimilate dif-
ferent types of data and to quantify their impact on the model
state and parameter estimation. In our experiments, we as-
similate land ice elevation data simulated based on The Ice,
Cloud, and Land Elevation Satellite-2 (ICESat-2) products.
These experiments are crucial for identifying observations
with the largest impact on the model state and parameter esti-
mates. Our assimilation results are highly sensitive to design
choices for observation networks, such as spatial resolutions
and prescribed uncertainties. Notably, the marginal improve-
ments or increases in RMSE observed at coarser resolutions
suggest that, beyond a certain spatial threshold, additional

observations do not improve and may even degrade long-
term estimates of the model state and parameters. The ensem-
ble DA framework, capable of assimilating multi-temporal
observations, shows promising results for real glacier appli-
cations through a continental ice sheet model. Additionally,
this framework provides a flexible infrastructure for perform-
ing OSSEs aimed at testing various observational settings
for future missions, as it requires less numerical model re-
development than variational methods.

1 Introduction

The combined contribution of the Greenland Ice Sheet (GrIS)
and the Antarctic Ice Sheet (AIS) to global sea level is one
of the most significant sources of uncertainty in projections
of sea-level rise for the coming century (IPCC, 2023). In
recent years, numerical ice sheet models have significantly
advanced through improved ice flow physics, enhanced spa-
tial resolution, and their ability to simulate moving bound-
aries (Nowicki and Seroussi, 2018). Despite these advance-
ments, projections of mass change for both the AIS and GrIS,
and consequently their contributions to sea-level rise over the
coming century, exhibit significant spread, primarily due to
uncertainty in key model parameters and model initialization
(Nowicki et al., 2016; Seroussi et al., 2020; Goelzer et al.,
2020).

Data assimilation (DA) is a method of combining infor-
mation from models with observations to improve the accu-
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racy of the model state variables and/or specific model pa-
rameters. DA methods for ice sheet modeling generally fall
into two categories: snapshot and transient inversions (Choi
et al., 2023), which use single-time observations and time se-
ries of observation, respectively. Snapshot inversion, imple-
mented using a form of variational data assimilation meth-
ods, has been widely used in ice sheet models to constrain
basal conditions, such as the friction coefficient, and estimate
the present state of the ice sheet using surface observations,
such as surface velocity (MacAyeal, 1992; Morlighem et al.,
2010). However, these approaches generally rely on observa-
tions at a single time to perform time-independent inversions
of model parameters. This method captures a specific state
of the ice sheet at a particular time (Morlighem et al., 2013;
Gillet-Chaulet et al., 2012), but it often introduces nonphys-
ical artifacts into the model’s initial state, potentially propa-
gating artifacts into transient simulations rather than captur-
ing actual trends of changes in ice dynamics (Seroussi et al.,
2011; Goldberg et al., 2015). Such artifacts in initial condi-
tions could affect model simulations over centuries to mil-
lennia due to the slow response time of ice sheets (Seroussi
et al., 2019).

Alternatively, data assimilation techniques that leverage
time-varying surface observations have been developed to
more accurately constrain ice flow over longer periods. The
use of computational techniques such as automatic differen-
tiation in ice sheet models (Goldberg and Heimbach, 2013)
has enabled the assimilation of more observations into tran-
sient model simulations, thereby capturing the model evo-
lution during the assimilation period — the time window dur-
ing which observations are assimilated into the model. While
this method has been applied in regional modeling studies
(Larour et al., 2014; Goldberg et al., 2015; Choi et al., 2023),
scaling time-varying data assimilation approaches for sim-
ulations covering entire ice sheets remains challenging due
to the complexities involved in developing a time-dependent
adjoint model and the substantial memory requirements of
automatic differentiation (Choi et al., 2023). Furthermore,
this method as well as static inversion do not explicitly com-
pute the uncertainty coming from the model state and param-
eters (Carrassi et al., 2018).

Ensemble data assimilation methods, which use an en-
semble of model simulations, offer an alternative to varia-
tional approaches by explicitly representing uncertainty in
the model state and parameters while assimilating time-
varying observations. Various forms of ensemble Kalman fil-
ter (EnKFs) have been effective for assimilating diverse ob-
servations into complex, large-scale and non-linear geophys-
ical models (Carrassi et al., 2018). The underlying principle
of the Kalman filter involves the sequential assimilation of
data to estimate state variables for numerical models. This is
achieved by iteratively adjusting the model state to better rep-
resent the unknown “true” state of the system based on noisy
observations (Carrassi et al., 2018). The assimilation based
on the EnKF is carried out across an ensemble of model runs,
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each representing plausible system states. As new observa-
tions are incorporated within the assimilation period, the en-
semble mean is generally expected to provide an increasingly
more accurate estimate of the model state under ideal condi-
tions. When the model state is updated at each assimilation
time, the model parameters can also be updated alongside
state variables to reflect past and present observations (Igle-
sias et al., 2013). Unlike time-independent inversions relying
on a snapshot of observations from a single time, this frame-
work enables the use of a time series of observations to pro-
vide an improved estimate of the model state and parameters.
While transient inversions also assimilate time-varying ob-
servations, they typically estimate a single model state con-
ditioned on all observations within the assimilation window.
In contrast, the EnKF updates the model state sequentially at
discrete observations time, without the need for estimating
a tangent linear and adjoint for the model and measurement
operators. In addition, EnKFs, similar to the classic Kalman
filter, provide a direct estimate of uncertainty in model state
and parameter estimates, which is represented heuristically
through the sample error covariance.

The ice sheet modeling community has traditionally relied
on snapshot inversion methods based on adjoint-based tech-
niques for parameter estimation, using time-invariant mo-
saics or composite data (e.g., multi-year averaged surface
velocity fields; Morlighem et al., 2010). Compared to these
methods, ensemble DA approaches have been less com-
monly used in ice sheet modeling, primarily due to histori-
cal limitations in observational data, computational cost, and
the challenges of representing uncertainty in ice sheet mod-
els. Ensemble approaches rely on time-varying observations
with well-characterized uncertainties, but surface observa-
tions for ice sheets have often lacked reliable uncertainty
estimates, making them less suitable for ensemble DA. Ad-
ditionally, ensemble methods typically require multiple for-
ward model runs, making them more computationally de-
manding than snapshot inversion approaches. Another lim-
itation is that poorly understood or unquantified errors in the
ice flow model itself may limit the reliable estimation of co-
variances using ensemble statistics.

Nonetheless, promising results have been demonstrated
in recent studies that apply ensemble DA to estimate both
the model state and basal conditions of ice sheets (Bonan
et al., 2014, 2017; Gillet-Chaulet, 2020). These include ini-
tializing marine ice sheet models that incorporate ice fronts
and grounding line migration. However, these studies (Bonan
et al., 2014, 2017; Gillet-Chaulet, 2020) utilized simplified
flowline models, limiting the representation of the horizontal
stress field that can impact ice dynamic processes through,
for example, buttressing. Such unrepresented physics in ice
flow models or structural model errors may limit the reliable
estimation of covariances. As more complete, time-resolved
datasets with robust uncertainty estimates become available,
and as ice sheet models grow more sophisticated while com-
putational costs continue to decrease, ensemble DA methods
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are increasingly worth exploring for larger-scale, more real-
istic ice sheet models.

Data assimilation and associated data denial experiments
— where the impact of specific observations is evaluated by
temporarily removing them from the assimilation process —
can be used to test the benefit of current observations, typi-
cally referred to as Observation System Experiments (OSEs),
as well as to evaluate the potential benefits of proposed obser-
vations, typically referred to as Observation System Simula-
tion Experiments (OSSEs, Arnold and Dey, 1986; Masutani
et al., 2010). The main difference is that OSEs assimilate real
observations, while OSSEs assimilate synthetic observations
generated from model output with errors sampled from a pre-
scribed observation error distribution representative of real
measurement uncertainties. Both approaches aim to provide
a systematic assessment of the value of observations for im-
proving model state and parameter estimation. OSSEs have
been successfully applied to atmospheric and oceanic mod-
els for decades, where analysis systems and the required DA
frameworks are far more established (Boukabara et al., 2016;
Hoffman and Atlas, 2016). For ice sheet modeling, however,
the application of these OSE/OSSE approaches has, to our
knowledge, not been previously explored.

This study explores the feasibility and benefits of using
an EnKF to assimilate surface observations into a 2D plan-
view ice model, with the aim of accurately estimating both
the model state (ice thickness) and key model parameters re-
lated to basal conditions (basal friction and topography). Us-
ing the shelfy-stream approximation (SSA, MacAyeal, 1989)
for the stress balance of the ice sheet, ice thickness serves
as the only prognostic variable representing the model state.
Basal friction and topography, which cannot be directly mea-
sured, are treated as key model parameters that must in-
stead be estimated through surface observations. We perform
a synthetic twin experiment in which we evaluate the esti-
mated model state and parameters by comparing them with
true values and using them as initial conditions to assess the
impact of ensemble data assimilation on model projections
(Sect. 2.3). Our modeling settings are similar to those used
in the previous study (Gillet-Chaulet, 2020), which used a
flowline model, with necessary modifications for our model
domain geometry and the coupling between a 2D ice sheet
model and the data assimilation system (Sect. 2.1). We in-
vestigate various ensemble DA parameters on a synthetic ice
sheet domain to explore effective ensemble DA strategies rel-
evant to ice sheet modeling (Sect. 2.2). One of the primary
objectives of this research is to use an idealized model con-
figuration to help inform future efforts in applying an EnKF
for real glacier cases. Within this context, we also configure
OSSE:s to evaluate the impact of various configurations of
observations on the estimated model state and basal condi-
tions (Sect. 2.4).
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2 Methods

This section describes the ice sheet model configuration
(Sect. 2.1), the ensemble DA framework (Sect. 2.2), and the
experimental designs used in this study (Sect. 2.3 and 2.4).
We first outline the twin experiment setup, which tests the
ability of the DA framework to recover the model state and
parameters under idealized conditions. We then describe the
OSSEs, which explore the effects of different observational
strategies on model initialization. Our methods are summa-
rized in Fig. 1.

2.1 Model Setup

We use the Ice-sheet and Sea-level System Model (ISSM,
Larour et al., 2012) to simulate the model state and forecast
its evolution over time. ISSM is a parallelized finite element
ice flow model with anisotropic mesh refinement capabilities,
which allows efficient ensemble simulations of ice sheets.

We construct our reference simulation using a bed geome-
try inspired by Asay-Davis et al. (2016) and Gillet-Chaulet
(2020). The synthetic bed topography features large-scale
overdeepening combined with added small-scale roughness.
The general shape of the bed is defined as:

zp(x, y) =max [By(x) + By(y), Zbdeepl (1)
150 — 3x, 0km < x <350 km
—900 + 5(x —350), 350km<x <450km  (2)
—400 — 3(x —450), 450km <x <L,

d. dc
By = o Laeore T T 20-Lrreolk 3)

By (x) =

where the parameter values used in these equations are
given in Table 1. Following Gillet-Chaulet (2020), we in-
troduce small-scale roughness to the bed topography us-
ing a midpoint displacement method (Fournier et al., 1982).
This method generates a two-dimensional surface by itera-
tively subdividing a grid, assigning random heights to the
corners, and displacing midpoints with added random dis-
placement. The magnitude of the displacement is scaled by
a standard deviation that decreases with each iteration as
205H " \where H is the roughness factor, set to 0.7 in this
study. We apply this method at 100 m resolution with 10 re-
cursive subdivisions, starting from an initial standard devi-
ation of 500 m. This process produces an asymmetrical bed
topography, which may better reflect realistic subglacial fea-
tures, although we conduct an idealized twin experiment in
this study. The model domain spans 0 to 640km in the x-
direction and 0 to 80 km in the y-direction. This domain is
discretized into approximately 27 000 elements using a tem-
porally static triangular mesh, with resolutions varying from
500 m near the coast to 10 km inland (Fig. 2d).

The basal friction coefficient follows a sinusoidal func-
tion similar to that used by Gillet-Chaulet (2020), compara-
ble to the inferred friction coefficient in Thwaites Glacier of
Antarctica in terms of both amplitude and spatial variations
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Initialize Ensemble

- Generate ensemble by perturbing initial guesses for:

* Prognostic state: Ice thickness
* Parameters: Friction coefficient, Bed topography

l

Observations
- Surface velocity and elevation

Forecast step (ISSM)

- Run simulations to the next observation time

- Twin experiments:

- Prepare restart files for DART

]

* Observed at every mesh node

l Update ensemble

* Added error of 5 m for elevation

and 10 m/yr for velocity
- Observing System Simulation
Experiments (OSSEs):

* Observed along ground tracks and
gridded

* Added error of 5-20 m for
elevation

topography

EAKF Analysis step (DART)
- Load restart files from ISSM
- Apply inflation and localization I
- Update state vector including:
* Prognostic state: Ice thickness
+ Parameters: Friction coefficient, Bed

- Use updated state and parameters as
initial conditions for next forecast step

Figure 1. Schematic overview of the ensemble data assimilation workflow using the EAKF within the DART-ISSM framework.

Table 1. Parameters for the reference ice sheet domain.

Parameter  Value Description

Zb,deep —720m  Maximum depth of the initial bedrock topography
Ly 640km  Domain length (along ice flow)

Ly 80 km Domain width (across ice flow)

dc 500 m Depth of the trough compared with the side walls
We 24 km Half-width of the trough

fe 4km Characteristic width of the side walls of the channel

(Brondex et al., 2019; Gillet-Chaulet, 2020). In this study,
we have adjusted this function for a 2D domain with an ad-
ditional y-component (Fig. 6a):

Cx,y)=Cx(x) x Cy(y) @

Cx(x) =0.02 + 0.01 sin (5 w> sin (30 2;”) (5)

Cy(y) =sin (7-[ M) ) ©
Ly

where Cy and Cy, are the x and y components of a friction
coefficient (C), respectively.

For the stress balance of an ice sheet, we use the shelfy-
stream approximation (SSA, MacAyeal, 1989), which sim-
plifies the Stokes equations for cases with a small aspect ra-
tio and basal friction. The basal stress, tp, is described by the
Weertman friction law for grounded ice:

1

1
7o = Clup|m ™ up @)
where uy, the ice basal velocity, and m the velocity exponent

set to 1/3 in this study.
The ice viscosity is defined using Glen’s law (Glen, 1955):

p=—r ®)

where B is the ice viscosity parameter, &. the effective strain
rate, and n Glen’s law exponent set to 3.
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The position of the ice front is fixed at the end of the do-
main, and the evolution of the grounding line is simulated
with a subelement grounding line parameterization (Seroussi
etal., 2014).

We run the model until it reaches a steady state using
a uniform surface accumulation rate of 0.3 myr’l, without
any basal melting. After 25000 years, the ice sheet stabi-
lizes at a steady state, with a grounding line located approxi-
mately at x = 470km along the center line of the glacier, just
downstream of the region of overdeepening (Fig. 2). A sharp
grounding line advance is observed near y = 10km, likely
caused by low surface elevation and high spatial variability
in the underlying bed topography in this area. To introduce
dynamic changes, we perturb this equilibrium state by instan-
taneously reducing the surface mass balance to —0.3myr—!.
We also introduce basal melting using a simple melt-depth
parameterization, as described by Favier et al. (2014), set-
ting the melt rate of 200myr~! at a depth of 800 m, which
results in an actual melt rate of approximately 170 myr~! be-
neath the ice shelf. Although this melt rate exceeds observed
present-day basal melt rates, we choose this value to create
a strong dynamical response over a forecast period, ensuring
that the effects of data assimilation could be clearly evalu-
ated. The elevated melt rate is not intended to represent a
realistic present-day scenario, but rather to serve as a diag-
nostic tool in the context of a twin experiment described in
Sect. 2.3. To generate the reference simulation for our exper-
iments, we run the model for an additional 200 years, while

https://doi.org/10.5194/tc-19-5423-2025



Y. Choi et al.: Ensemble data assimilation for ice sheet modeling 5427

keeping perturbed surface and basal forcings constant. For
the first 100 years, the grounding line retreats at a relatively
slow pace, but the retreats accelerate after approximately 130
years (Fig. 2b). We refer to this simulation as the “reference
simulation”, from which we derive synthetic observations
and reproduce the model state and parameters through our
ensemble DA framework. The setup of the reference simula-
tion resembles an idealized Antarctic glacier.

2.2 Data assimilation

We use the Data Assimilation Research Testbed (DART, An-
derson et al., 2009) to implement ensemble data assimila-
tion with ISSM. DART provides various DA algorithms and
modules to create a complete end-to-end DA framework. In
this study, we utilize the Ensemble Adjustment Kalman Fil-
ter (EAKF, Anderson, 2001) algorithm within DART, which
belongs to a class of deterministic ensemble square-root fil-
ters (Tippett et al., 2003). In contrast to the standard stochas-
tic EnKF — which perturbs observation-space quantities ran-
domly for each ensemble member to account for observa-
tional uncertainty — the EAKF avoids additional perturba-
tions and instead analytically adjusts the ensemble members
to match the posterior mean and covariance determined by
the original Kalman filter equations (Anderson, 2001). This
approach improves numerical stability and reduces sampling
noise over stochastic EnKFs, especially for small ensemble
sizes (Whitaker and Hamill, 2002). In this study, we choose
the EAKF due to its reduced sensitivity to ensemble size
compared to stochastic EnKFs and improved robustness in
geophysical systems, as demonstrated in previous studies
using DART (Zubrow et al., 2008; Anderson et al., 2009).
Throughout this paper, we use “EnKF” to refer to ensemble
Kalman filter methods more generally, and “EAKF” to refer
specifically to the version implemented in this study. We re-
fer readers to Anderson (2001) for the full algorithmic details
of the EAKF.

Within DART, ice sheet variables are placed into a state
vector, and the filter uses the ensemble-estimated error co-
variance to compute the Kalman gain needed to update the
model state with available observations. The state vector is
augmented to include both prognostic variables and model
parameters to be estimated. Under the stress balance of SSA,
the velocity is a diagnostic variable, and due to the flota-
tion condition, ice thickness is the only prognostic variable
(Gillet-Chaulet, 2020). In this study, the state vector includes
ice thickness (state variable), and basal friction coefficient
and bed topography (model parameters), allowing joint esti-
mation of the model state and parameter fields through the
DA process (Fig. 1).

A common challenge with EnKFs, including the EAKF
used in this study, is the issue of undersampling, which arises
when the size of the ensemble is significantly smaller than
the independently observed degrees of freedom for the model
state. Sampling errors occur because the ensemble-based co-
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variance is only an approximation of the true covariance,
and small ensembles may not adequately capture variability
across the full state space (Carrassi et al., 2018). In our ex-
periments, we use ensemble sizes of 30, 50, and 100, while
the number of observations can range from hundreds to thou-
sands, depending on the observation configuration. Localiza-
tion and inflation are common methods to mitigate under-
sampling issues and increase the stability of the EAKF (Car-
rassi et al., 2018; Morzfeld and Hodyss, 2023). Localization
adjusts the spatial influence of observations, thereby prevent-
ing the distortion of estimates by distant observations. While
previous studies (Gillet-Chaulet, 2020; Cook et al., 2023)
have explored the effects of localization on the model state
estimation using flowline models, its application to 2D plan-
view models remains unexplored. Similarly, inflation, which
addresses sampling errors by artificially increasing the fore-
cast covariance matrix, has not been thoroughly studied for
large-scale ice sheet modeling. To identify the most effective
settings, we conduct sensitivity tests using a range of both
localization radii (2 to 20 km) and inflation factors (1.00 to
1.20) within our ensemble data assimilation framework.

2.3 Twin experiment

We conduct a twin experiment to evaluate the performance
of using an EAKF to assimilate surface observations into a
2D plan-view ice model. Using the ISSM-DART DA frame-
work, we aim to estimate the ice sheet state together with
model parameters. Here, we assume that the friction coeffi-
cient and the bed topography are the only two unknown pa-
rameters that need to be estimated, while all other parameters
and forcings (e.g., ice rigidity, surface mass balance) are per-
fectly known and identical to those used in the reference sim-
ulation. We assimilate annual surface observations derived
from the reference simulation over a 30-year span — approx-
imately the satellite observational period for ice sheets — to
assess the ability of the ensemble DA framework to recover
the initial model state and basal conditions of the reference
ice sheet.

We obtain synthetic surface observations of ice elevation
and velocities from the reference simulation and assume that
the surface elevation and velocities are observed at annual
resolution (e.g., at the start of each year) at each ISSM mesh
node. To simulate observation error, we add uncorrelated
Gaussian noise with a standard deviation of 5 m for the sur-
face elevation and 10 myr~! for the velocity as a simple un-
certainty baseline. These standard deviation values are lower
than the ones from Gillet-Chaulet (2020), but still within a
plausible range according to recent studies (Dai and Howat,
2017; Mouginot et al., 2017). Dai and Howat (2017) report
vertical elevation uncertainties below 5 m in well-constrained
regions, and Mouginot et al. (2017) report horizontal veloc-
ity uncertainties ranging from 5-20 m yr~—! depending on the
region. We choose values at the lower end of these ranges to
isolate the performance of the DA framework under favor-
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Figure 2. (a) Initial steady-state ice surface elevation. (b) Bed topography of model domain and grounding line positions every 10 years
from O to 200 years for the reference simulation (white to red). (¢) Initial steady-state velocity with contours of 50 and 100 m yr_1 (magenta
lines). The white line shows the initial grounding line position. (d) Mesh resolution of the model domain.

able conditions. We explore the sensitivity to larger uncer-
tainties in our OSSEs presented in Sect. 2.4.

To generate initial ensembles, we adopt an approach sim-
ilar to that described by Gillet-Chaulet (2020). For the fric-
tion coefficient, we create a random field, assuming a known
mean value of 2500 Pam~!/3 yr!/3 across the domain and us-
ing a prescribed covariance model for spatial dependency.
We use a Gaussian function for the variogram with a range
of Skm and a sill of 90 000. These values for the range and
sill were selected based on Gillet-Chaulet (2020), with ad-
justments made for the domain and friction law used in this
study. For bed topography, we use an exponential function
for the variogram with a range of 50 km, a sill of 4000 m?
and a nugget of 200 m?, also based on the same study (Gillet-
Chaulet, 2020). Unlike the friction coefficient, which typ-
ically cannot be directly measured and often lacks prior
knowledge, the bed topography can be measured using ice
penetrating radar (e.g., Evans and Robin, 1966; Dowdeswell
and Evans, 2004; Rodriguez-Morales et al., 2014). We as-
sume that we have radar measurements of bed topography
along tracks perpendicular to ice flow every 30 km. Using
kriging with an exponential covariance model, we generate a
conditional random field of the bed topography constrained
by these observations. Initial ensembles for both parameters
are created using the GSTools Python package (Miiller et al.,
2022). Additional initial ice sheet variables, such as initial
thickness and velocity, are calculated through a stress bal-
ance solution using the initial ensemble of friction coefficient

The Cryosphere, 19, 5423-5444, 2025

and bed topography. In our setup, the basal friction coeffi-
cient and bed topography are estimated jointly as part of the
augmented state vector. While we do not prescribe a prior
correlation between them, the EAKF uses ensemble-based
cross-covariance between these parameters and background
variables to update both fields during the assimilation pro-
cess.

To date, no studies have determined optimal localization
and inflation factors for large-scale 2D ice sheet models.
Therefore, we conduct sensitivity tests to identify the best
values for these parameters across various ensemble sizes.
For this study, a Gaspari-Cohn fifth-order polynomial is used
for horizontal direction localization to limit observation up-
dates within a specific radius (Gaspari and Cohn, 1999). Lo-
calization is applied to reduce correlations between model
states projected into observation space and the unobserved
state variables, which does not explicitly damp covariances
across co-located variables (Anderson, 2007). For inflation,
we use the spatially uniform state space inflation (Ander-
son et al., 2009). We explore various combinations of infla-
tion and localization values to find the optimal combination.
Specifically, we vary the localization radius from 2 to 20 km
in 2km increments and adjust the inflation factors from 1.00
to 1.20 in 0.02 intervals. Initial experiments begin with an
ensemble size of 30, based on findings from smaller-scale
flowline model studies that demonstrate robust DA perfor-
mance with relatively small ensembles. We then extend our
experiments to larger ensembles, using 50 and 100 members,
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to examine the impact of ensemble size on DA performance
in large-scale ice sheet modeling.

To evaluate the effectiveness of the ensemble DA frame-
work in retrieving basal conditions and ice sheet state, we
calculate the root-mean-square error (RMSE) between the
analysis mean states and the designated true values for bed
topography (RMSE_B), friction coefficient (RMSE_C), and
ice thickness (RMSE_H). After each analysis, RMSE values
are computed at all nodes where basal conditions have been
updated through assimilation. This calculation includes only
those nodes where at least one node in the triangular mesh
is grounded, as surface observations only respond to changes
in the basal condition of grounded ice.

Based on the model state and parameters estimated from
the DA simulation, we conduct deterministic and ensemble
forecasts extending up to r =200 years to explore the im-
pact of ensemble DA initialization on model projections. We
use the ensemble mean to initialize the deterministic simula-
tion and the full ensemble to initialize the ensemble forecast
simulations, similar to Gillet-Chaulet (2020). We also utilize
the estimated model state and parameters as initial conditions
from various points in the DA simulation different initial con-
ditions, e.g., the analyzed states at r = 5 years, t = 15 years,
and ¢t = 30 years, for forecast simulations to investigate the
impact of different DA periods on model simulations.

2.4 Observing System Simulation Experiments
(OSSEs)

We conduct OSSEs within our synthetic model domain to
investigate the potential impact of varying observed quanti-
ties and their associated uncertainties. For our OSSEs, we
assume a “perfect” model without any model error, follow-
ing the perfect model OSSE framework (Zhang et al., 2018).
While the twin experiment described in the previous section
is more focused on testing the capabilities of the EAKF un-
der ideal conditions, the suite of experiments in this section is
designed to explore the feasibility of performing joint state-
parameter estimation for the ice sheet model under realistic
observational settings, which will provide valuable insight
and guidance for future, more realistic OSSE efforts. In this
study, we primarily explore the impact of different types of
surface elevation observations and their uncertainties. We as-
similate the synthetic elevation data in two different ways: (i)
along ground tracks, which mimics The Ice, Cloud, and Land
Elevation Satellite-2 (ICESat-2) ATL11 product, (ii) at reg-
ularly gridded locations, which mimics the ICESat-2 ATL15
product (Smith et al., 2023, 2024). We use the same veloc-
ity data as in the previous twin experiment, assuming that
the velocity products provide almost full coverage of annual
velocity both spatially and temporally, and we focus on the
impact of surface elevation observations.

For the along-track data, we generate synthetic surface el-
evation observations along tracks that emulate the Reference
Ground Track (RGT) used by ICESat-2 ATL11 product. The
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RGT is a virtual line that corresponds to the nadir track of
the designed orbit (Smith et al., 2019). For our synthetic do-
main, surface elevation is assumed to be observed annually,
while the actual temporal resolution of ATL11 data is 91d.
Synthetic observations are spaced every 60 m along each
track, which is the spatial resolution of ATL11 ice height
data (Smith et al., 2023). While the actual ATL11 product
exhibits varying cross-track spacing depending on latitude,
we test cross-track spacings from 5 to 15 km, which covers
the range of cross-track spacing of the ICESat-2 RGTs in
the polar regions (Fig. 3). To generate synthetic observations,
we linearly interpolate model surface elevation at surround-
ing mesh nodes to the observation points along our tracks.
We also explore the impact of the observational uncertain-
ties on the DA performance by conducting experiments with
different levels of uncertainty in surface elevation. These ex-
periments aim to determine the permissible level of error for
different surface elevation products to ensure reliable DA for
our model domain. We introduce Gaussian noise to surface
elevation at each mesh node, using standard deviation rang-
ing from 5 to 20 m with 5 m increments, and propagate stan-
dard errors to points along the tracks.

For gridded elevation observations, we create synthetic
datasets at 1, 10 and 20km resolutions, corresponding to
the spatial resolution of ATL15 product. The ATL15 product
is a spatially continuous gridded dataset of land ice height-
change (Smith et al., 2024). We first interpolate surface ele-
vation from the mesh used in the reference simulation onto
a grid with 100 m resolution, then average these 100 m grids
to create a 1 km grid cell, using equal weights for all 100 m
grids. Surface elevation data at 10 and 20 km resolutions are
created similarly from 1 km grid data. In our OSSEs, we as-
sume an annual observation frequency of surface elevation
for consistency across experiments, including the twin ex-
periments, although the actual temporal resolution of ATL15
data is 91d. Similar to the track elevation data, Gaussian
noise is introduced with standard deviations from 5 to 20 m
at each mesh node, with propagated error onto the gridded
data.

3 Results
3.1 Twin experiments and projections

Our twin experiments show the feasibility of the EAKF DA
approach for ice flow modeling. The experiments are con-
ducted with a range of configurations. Figure 4 shows the
RMSE values for the bed topography, friction coefficient,
and ice thickness after 30 years of DA. As the ensemble
size increases, DA performance remains relatively robust —
demonstrated by lower RMSEs — over a wider range of lo-
calization radii and inflation factors. We observe that the best
DA results, indicated by the minimum RMSEs, are achieved
with a localization radius of 4 km for the friction coefficient
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Figure 3. Elevation observations taken along synthetic ground tracks from a configuration of (a) 5 km cross-track spacing, (b) 10km cross-
track spacing, and (c¢) 15 km cross-track spacing, with data points posted every 60 m along the track.

and 6 km for bed topography and ice thickness. When the
localization radius is set below those optimal values (4 km
for friction coefficient and 6 km for bed topography and ice
thickness), a significant increase in RMSEs occurs, and any
increase beyond those optimal values also results in grad-
ual increases in RMSEs. The optimal inflation factors tend
to decrease as the ensemble size increases because larger en-
sembles generally provide better approximations of the true
error covariance, reducing the need for artificially inflating
the covariance to compensate for sampling errors (Anderson
et al., 2009; Carrassi et al., 2018). For our experiments, opti-
mal inflation values range between 1.10-1.14 for the friction
coefficient and 1.16-1.18 for bed topography and ice thick-
ness, when using the optimal radius for each parameter. Ad-
ditionally, with the optimal localization radius, we note an
improvement in DA performance with increasing inflation up
to a certain threshold, beyond which the performance signif-
icantly decreases.

To assess the impact of ensemble size, we compare the
evolution of RMSE:s as a function of assimilation time using
the optimal localization and inflation factors identified above
(Fig. 5). For the friction coefficient, RMSE decreases rapidly
during the first three years. The RMSE values of bed topog-
raphy and ice thickness show a relatively steady decrease
across all tested ensemble sizes, without an initial rapid drop.
In all experiments shown in Fig. 5, the small increase in
RMSE is examined during the early period of assimilation;
however, as the assimilation continues, the RMSE values de-
crease again until the end of the assimilation period. While
increasing the ensemble size from 30 to 50 shows clear im-
provements in DA performance, further increasing the size to
100 does not consistently reduce RMSEs and, in some cases,
even results in slightly higher errors. For the remaining twin
experiments, we proceed with an ensemble size of 50, a lo-
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calization radius of 4 km, and an inflation value of 1.12 as a
representative setup to demonstrate performance.

The reference friction coefficient and bed topography,
along with the ensemble mean fields, before and after assim-
ilation with the DA configuration selected above, are shown
in Figs. 6 and 7. We also show how the difference between
true ice thickness and the ensemble mean changes before and
after assimilation in Fig. 8. As more observations are assim-
ilated, the discrepancies from the reference fields decrease
compared to the initial ensemble mean. The areas around
the grounding line, where the signal-to-noise ratio of velocity
is relatively high, exhibit the most significant improvements
through ensemble DA. In these regions, the spatial variations
of both the friction coefficient and bed topography fields are
accurately captured by the ensemble DA process. At the end
of the 30-year assimilation period, areas located far upstream
(up to 350 km) from the grounding line continue to show im-
provements, although not as significant as those observed
near the grounding line. The pattern in the estimated ice
thickness is very similar to that of bed topography. The arti-
facts observed in bed topography and ice thickness are the re-
sult of the conditional random fields generated using the krig-
ing method, which can produce “bull’s eye” patterns com-
monly observed between observation points. In our model
setup, surface elevation is defined as the sum of ice thickness
and bed topography (surface = thickness + bed). Therefore,
as surface observations are assimilated, improvements in bed
estimates are reflected in the estimated thickness field.

Figure 9 presents the changes in ice volume over time for
the reference simulation, along with the forecast simulations
based on the ice sheet state without and with data assimila-
tion over periods of 5 to 30 years. Forecast simulations were
conducted in two ways, one with the ensemble mean model
state and parameters for the single deterministic simulations
and the other with the full ensemble members for the en-
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semble forecast. Without data assimilation, the deterministic
forecast — using the ensemble mean basal conditions (e.g.,
initial mean basal conditions) — tends to underestimate ice
loss over the 200-year period. This simulation, however, cap-
tures the accelerated volume loss observed in the reference
simulation beginning at = 130 years, when the grounding
line enters the reverse-sloping bed topography. By the end of
the forecast simulation, the discrepancy in volume loss be-
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tween the reference and deterministic simulations is 2700 Gt.
Across the ensemble members, the changes in ice volume at
t = 200 years range from 7300 to 29 600 Gt, with only about
25 % of the entire ensemble successfully predicting the onset
of accelerated volume loss at t = 130 years.

As more observations are assimilated, the ensemble spread
is reduced, and the results of the deterministic simulations
more closely align with the reference simulation. After 5
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years of assimilation, both the deterministic and ensemble
forecast simulations accurately reproduce changes in ice vol-
ume up to t =15 years before beginning to diverge from
the reference trajectory, resulting in 3800 Gt of difference
in volume loss by the end of the forecast period. Extend-
ing the assimilation period to 15 years reduces this discrep-

The Cryosphere, 19, 5423-5444, 2025

after 5 years of assimilation
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ancy, with the deterministic forecast showing a smaller dif-
ference of 350Gt in volume loss at =200 years. When
the assimilation period is extended to 30 years, the agree-
ment with the reference simulation improves even further,
reducing the final volume loss difference to just 90 Gt. These
results demonstrate that assimilating more observations not
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only improves agreement during the early forecast period but
also enhances the accuracy of long-term projections. With 15
years of assimilation, the ensemble spread decreases by ap-
proximately 86 % compared to the case without assimilation.
Extending the assimilation window to 30 years results in lit-
tle additional reduction in ensemble spread beyond what is
achieved with 15 years of assimilation.

3.2 Results for Observing System Simulation
Experiments (OSSEs)

In the context of our OSSEs, we evaluate the impact of vary-
ing cross-track spacings and grid resolutions of surface eleva-
tion data on the performance of DA in estimating the model
state and parameters. Since the simulated surface elevation
observations use different cross-track spacings and grid reso-
lutions, we conduct sensitivity tests with an ensemble size of
50 to optimize both localization and inflation factors. When
assimilating along-track surface elevations with 5 and 10 km
across track spacing, the best DA results are achieved with
a localization radius of 4 km and the inflation between 1.10
and 1.14 for all variables (Fig. 10), similar to the DA results
with full coverage of elevation data at each model mesh node
in the twin experiment. As the across-track spacing increases
to 10 and 15 km, the overall DA performance declines, indi-
cated by an increase in the mean RMSE by up to 16 % for
three estimated variables.

For the gridded elevation data with 1km resolution, the
optimal localization and inflation factors are 4 km and 1.12,
respectively, for all variables. In experiments with gridded el-
evation data of 10 and 20 km resolutions, the overall DA per-
formance declines (i.e., an increase in RMSE) over a range of
localization and inflation factors (Fig. 11). We find the min-
imum RMSE values at the end of the assimilation window
with a localization radius of 6-8 km and inflation values of
1.02-1.06 for both 10 and 20 km resolution data. While tun-
ing these parameters helps improve performance, the overall
accuracy remains lower than that achieved with 1km grid
data.

With the optimal parameter combinations identified for
each elevation data type experiment, we conduct additional
experiments exploring the impact of the prescribed uncer-
tainty (oy,) of surface elevation data. To evaluate the DA per-
formance, we summarized the RMSEs at the end of the as-
similation window (at year 30) for each experiment in Ta-
bles 2 and 3. The evolution of RMSEs over the assimilation
period using the ground track and grid elevation observations
are shown in Figs. 12 and 13, respectively.

When assimilating observations with 5km across-track
spacing and the same observational error as in the twin exper-
iments (o, =5mand oy = 10m yr_1 ), the DA performance,
as measured by RMSEs, is comparable to that observed in the
twin experiment (Table 2 and Fig. 12). As the across-track
spacing of observed surface elevation increases, DA perfor-
mance declines as expected. When assimilating data at 10 km
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or 15 km across-track spacing, RMSE values remain higher
than those with 5km spacing at r = 30 years. A similar re-
sult is observed with gridded elevation observations: high-
resolution data (1 km) produces DA performance comparable
to that of the twin experiment (Table 3 and Fig. 13). However,
as the spatial resolution increases to 10 and 20 km, the over-
all DA performance declines. For the 10 km grid data, only
marginal improvements in the parameter and model state es-
timates are observed after 10—15 years of assimilation, while
for the 20km grid data, DA performance begins to degrade
after 20 years of assimilation.

With 5km across-track spacing, DA performance in re-
trieving bed topography and ice thickness decreases as the
uncertainty in the surface elevation increases, both during the
assimilation period (Fig. 12a, d, g) and at the end of the as-
similation window (Table 2). DA performance for the friction
coefficient shows little sensitivity to changes in elevation un-
certainty, with RMSE_C varying by only ~ 3 %, compared
to ~ 10 % variation in RMSE_B and RMSE_H at the end
of the assimilation period. With the 10 km across-track data,
DA performance for bed topography and ice thickness be-
comes more consistent across all uncertainty levels in eleva-
tion data, compared to the 5 km case (Fig. 12b, e, h). When
using the 15 km across-track data, only surface elevation with
an observational error standard deviation of 5m improves
bed and ice thickness estimation up to t = 30 years, while
prescribed standard deviations of 10-20 m do not yield fur-
ther improvements beyond 15-20 years of DA, and some in-
crease in RMSE values is observed (Fig. 12c, f, i). During
the assimilation period, the performance for bed topography
and ice thickness is more similar across all uncertainty levels,
compared to using the 5 km across-track data.

With the 1km gridded elevation data, increasing uncer-
tainty levels reduce the accuracy of bed and ice thickness
estimation, while the friction coefficient does not show a
clear pattern with varying uncertainty in surface elevation
(Fig. 13a, d, g). With coarser grid data (10 and 20 km), the
DA performance for all three variables shows less varia-
tion across different uncertainty levels during the assimila-
tion window, compared to the 1 km grid data (Fig. 13b, e, h
andc, f,1).

4 Discussion

In this study, we show that the EAKF can effectively esti-
mate both model state and parameter estimates for a semi-
idealized glacier, especially in fast-flowing regions (e.g., ve-
locity larger than 100 m yr—!), which corresponds to regions
around the grounding line, where the signal-to-noise ratio
of velocity is relatively high. These results are consistent
with those from previous studies (Gillet-Chaulet, 2020; Bo-
nan et al., 2014, 2017), yet our approach employs a 2D
model with unstructured meshes, enhancing its applicabil-
ity to larger-scale ice sheet modeling simulations. Similar to
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Table 2. List of experiments using various across-track surface observations and analysis mean RMSEs ¢ = 30 years.

Experiment Name RMSE_C (Pam~!/3yr!/3) RMSE_B (m) RMSE_H (m)
Twin experiment (o, = 5m and oy = 10myr—!) 296.01 47.63 46.87
Track_5km_op,_5_oy_10 306.89 49.06 47.77
Track_5km_oy,_10_oy_10 304.96 50.65 48.96
Track_5km_oyp,_15_oy_10 305.62 51.71 50.14
Track_5km_op,_20_oy_10 313.61 54.02 52.56
Track_10km_oy,_5_oy_10 338.28 53.69 51.18
Track_10km_oy,_10_oy_10 335.26 52.84 50.62
Track_10km_oy,_15_oy_10 350.69 56.86 53.19
Track_10km_oyp,_20_oy_10 341.78 56.45 54.17
Track_15km_oy_5_oy_10 410.10 62.79 59.59
Track_15km_oy,_10_oy_10 429.70 73.43 70.03
Track_15km_oy,_15_oy_10 414.05 72.55 65.96
Track_15km_oy,_20_oy_10 389.90 69.62 65.74
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Figure 11. Same as Fig. 10 but for different grid resolution of elevation data.

Table 3. List of experiments using various gridded surface observations and analysis mean RMSEs at r = 30 years.

Experiment Name RMSE_C (Pam~!/3yr!/3) RMSE_B (m) RMSE_H (m)
Twin experiment (o = 5m and oy = 1Omyr_1) 296.01 47.63 46.87
Grid_1lkm_o},_5_oy_10 291.38 48.65 46.81
Grid_lkm_o},_10_oy_10 288.54 48.62 47.43
Grid_lkm_o},_15_oy_10 291.29 53.89 53.14
Grid_1km_o},_20_oy_10 290.66 54.88 53.97
Grid_10km_oy,_5_oy_10 437.48 67.58 63.72
Grid_10km_oy,_10_oy_10 423.84 66.76 63.99
Grid_10km_oy,_15_oy_10 430.58 65.96 62.63
Grid_10km_o},_20_oy_10 427.20 66.61 63.20
Grid_20km_oy,_5_oy_10 432.50 80.07 80.76
Grid_20km_o},_10_oy_10 433.64 80.69 79.96
Grid_20km_oy,_15_oy_10 431.91 77.42 78.97
Grid_20km_oy,_20_oy_10 433.06 77.84 79.39
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Figure 12. The evolution of ensemble mean RMSEs for (a—c) friction coefficient, (d—f) bed topography, and (g—i) ice thickness under
different across-track spacings of surface elevation observations and varying levels of surface elevation uncertainty.
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Figure 13. Same as Fig. 12, but using different grid resolutions for surface elevation observations.
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earlier studies, assimilating new observations over the first
few years significantly improves the accuracy of bed topog-
raphy, friction coefficient, and ice thickness estimates in fast-
flowing regions. A temporal decline in DA performance is
observed during the assimilation period, likely due to a tem-
porary mismatch between the model forecast and the obser-
vations, potentially caused by nonlinearities in the response
to assimilated observations. As the assimilation continues,
the filter gradually corrects these discrepancies, which leads
to a subsequent reduction in RMSE. These fluctuations are
not uncommon in ensemble data assimilation systems, es-
pecially in complex, nonlinear models where localized er-
ror growth can temporarily degrade performance (Carrassi
et al., 2018). Although the slow-flowing regions — where the
relative error in velocity observation is higher than in fast-
flowing regions — show only limited improvements in basal
conditions compared to the fast-flowing region, they still
show notable improvements up to 300 km inland from the
initial grounding lines (x = 150km). These improvements
allow more accurate forecasts of ice volume loss for up to
200 years, as the grounding line retreats by approximately
150 km (to x = 300km) by the end of the reference simula-
tion.

For the initial estimates of the model parameters — bed to-
pography and friction coefficient — we assume reasonably ac-
curate prior knowledge of initial conditions and prescribe co-
variance models to establish spatial correlation within each
parameter. In real glacier applications, however, these as-
sumptions may not hold. For better DA results, more accu-
rate measurements and/or prior information for bed condi-
tions are required, such as additional radar measurements of
bed topography and potential relationships between geophys-
ical observations (e.g., seismic or radar-based measures) and
friction (Kyrke-Smith et al., 2017; Haris et al., 2024). Alter-
natively, multi-model reconstructions of parameters could be
leveraged to generate initial ensembles of parameters and de-
termine the ensemble spread (Gillet-Chaulet, 2020). Our DA
results, along with localization and inflation factors, may de-
pend on assumptions about how the initial ensemble is gen-
erated. Exploring how gaps in prior information affect DA
results could provide valuable insights, particularly in under-
standing the robustness of DA results when challenged with
realistic data limitations and parameter uncertainties.

The robust performance of the EAKF in constraining the
basal conditions and initial ice sheet state for future projec-
tion has been achieved with the ensemble size of 30, the
smallest explored in this study, consistent with previous stud-
ies performing data assimilation for flowline models (Bonan
et al., 2014; Gillet-Chaulet, 2020). We further show that in-
creasing the ensemble size allows robust DA performance
over a wider range of localization radii and inflation factors
and produces only marginally improved performance in re-
trieving basal conditions with shorter assimilation windows.
Therefore, a majority of experiments performed in this study
use an ensemble size of only 50 members, which we find to
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be a reasonable tradeoff between data assimilation accuracy
and computational efficiency.

Larger ensemble sizes could improve data assimilation
performance but may also introduce challenges that must be
carefully managed, particularly in long assimilation periods
or highly nonlinear systems, as in this study. In our experi-
ments, it is possible that the inflation and localization param-
eters used for the 100-member ensemble were not optimal
for later assimilation periods, leading to slightly degraded
performance after year 15. This suggests that filter perfor-
mance does not necessarily scale linearly with ensemble size
and highlights the importance of adaptive inflation/localiza-
tion techniques or diagnostics for dynamically adjusting filter
settings.

In this study, we use spatially and temporally uniform in-
flation and localization techniques to stabilize the filter, sim-
ilar to previous studies (Bonan et al., 2014; Gillet-Chaulet,
2020). The optimal inflation factors for this study (1.10-
1.18) are similar to values (0.98-1.14) from earlier studies
(Bonan et al., 2014; Gillet-Chaulet, 2020). For localization
radius, the best results were obtained with a radius of 4-8 km.
Choosing too small of a radius causes the EAKF to underes-
timate spatial error correlations and diverge with time. In our
experiments, this is evident when the localization radius falls
below the specific threshold of each variable (e.g., 4 km for
friction and 6 km for bed topography).

The optimal localization radius found in this study com-
pares to previous flowline model studies that suggested op-
timal localization radii of 4—16km for a grid size of 0.2 km
(Gillet-Chaulet, 2020) and 80—-120 km for a grid size of Skm
(Bonan et al., 2014). The differences in the optimal localiza-
tion radius likely comes from the differences in model con-
figuration, dimensionality, and spatial resolution. Our study
uses a 2D unstructured mesh with relatively fine spatial reso-
lution, whereas previous studies using flowline models with
coarser grids may require broader localization to account for
longer correlation length scales. The localization radius is
determined through a set of sensitivity experiments and is
based on the expected spatial correlation length scale of the
parameters, which may depend on the size of flow features or
stress balance regimes. Given our use of a 2D unstructured
mesh, adaptive inflation (El Gharamti, 2018) and localiza-
tion (Bishop and Hodyss, 2007) can be viable alternatives,
as each node has a different number of observations to be
assimilated.

In our twin experiment and projections, we find that assim-
ilating more observation years to estimate basal conditions
improves the accuracy of model projections with reduced un-
certainty through the corresponding projection period. With-
out data assimilation, individual ensemble members show a
large spread of future projections due to nonlinear feedbacks
triggered by small deviations from the true basal field. While
the deterministic forecast, initialized with the ensemble mean
of the basal fields, captures the overall trend in ice volume
change from the reference simulation, reducing local ex-
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tremes, it still yields consistent discrepancies throughout the
assimilation period. Assimilating surface observations for up
to 15 years results in ensemble and deterministic ice volume
loss forecasts that closely match the reference simulation for
up to 100 years, with much reduced ensemble spread and
ice volume loss difference limited to approximately 300 Gt
(compared to ~ 2000 Gt with no assimilation). Extending the
assimilation window to 30 years allows forecast simulations
to match the reference simulation for up to 200 years. No-
tably, the 200-year reference simulation includes a phase of
accelerated volume loss after 130 years, which may repre-
sent a plausible sea level rise scenario for the coming cen-
tury. Our results suggest that assimilating observations even
before such nonlinear transitions can still reproduce accurate
long-term projections — provided that the model state and pa-
rameters are well constrained. Our projections further show a
better match to the reference simulations compared to those
from a previous study (Gillet-Chaulet, 2020), potentially due
to our use of more observations with smaller error variance
(ov and oy). The method used here, which assimilates time
series of observations, maintains consistency with transient
changes in the model state and provides an optimal initial
condition for changing glaciers.

In this study, we focus on estimating two constant-in-
time parameter fields and the model state using annual ob-
servations over assimilation windows of varying lengths (5,
15, and 30 years). This choice is motivated by both the
timescales associated with glacier dynamics and the current
capabilities of observing platforms. However, the relative im-
portance of the assimilation window length (i.e., total time
span) versus the number of assimilation cycles (i.e., update
frequency) remains an open question. To explore this, we
conduct an additional experiment using semiannual observa-
tions under the same setup as the twin experiment (Fig. Al).
The results suggest that semiannual observations lead to a
faster reduction in RMSE for both the model state and param-
eters. However, the improvement at the end of the 30-year
assimilation window, compared to annual assimilation, re-
mains limited. This limited benefit is likely due to the nature
of the parameters and state variables considered in this study
— constant-in-time fields and annual-scale variability — which
allow sufficient information to accumulate over time for a
fixed target. Once sufficient assimilation cycles have passed,
the parameters become well constrained, and more frequent
updates offer little additional improvement. These findings
suggest that, for slowly varying or static variables, increasing
observation frequency can accelerate convergence toward the
true state and parameter values, but may not results in addi-
tional improvement beyond a certain number of assimilation
cycles. In contrast, if parameters or model states change more
rapidly or nonlinearly, a longer assimilation window or more
complex update schemes might be needed to achieve similar
improvements. Future work should explore the sensitivity of
EnKF performance to both assimilation frequency and win-
dow length to identify optimal configurations for real glacier
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systems with time-varying parameters and limited observa-
tion periods.

The purpose of our OSSEs — which use synthetic observa-
tions to evaluate the potential benefits of different observ-
ing strategies — is to demonstrate their capabilities within
the ISSM-EnKF framework. Our OSSE experiments show
that an EnKF can effectively assimilate various types of sur-
face elevation observations (both grid and track) to evalu-
ate the impact of different observational products. We find
that higher spatial resolution in elevation observations sub-
stantially improves DA performance. For example, grid-
ded data at 1 km resolution and track-based data with 5km
across-track spacing yield results comparable to those in
our twin experiment with full coverage. In principle, higher-
resolution data (e.g., 100 m) could further improve data as-
similation performance by providing finer spatial detail on
surface features and more precise constraints on model pa-
rameters. However, the benefit of finer resolution may de-
crease beyond a certain threshold due to increased observa-
tional noise, modeling uncertainties, and the inherent spa-
tial correlation scale of the parameters being estimated. In
contrast, lower-resolution datasets — such as 10-20 km grid-
ded data or 15km track spacing — lead to a noticeable de-
cline in DA performance. In these cases, the filter struggles
to resolve finer-scale variations in the ice sheet state, result-
ing in larger RMSE values. Additionally, the marginal im-
provements or increases in RMSE observed at coarser reso-
lutions after 1015 years suggest that, beyond a certain spa-
tial threshold, additional data points do not improve — may
even degrade — long-term parameter and the model state es-
timations (Figs. 12 and 13). These results highlight the im-
portance of balancing observational density and coverage to
maximize DA performance over the historical period.

The OSSE experiments also provide a basic demonstra-
tion of the impact of observational error on DA performance,
with particular benefits of lower surface elevation uncertain-
ties on bed topography and ice thickness estimation when
using high-resolution data. These benefits become less pro-
nounced when lower-resolution elevation data are used. In
contrast, friction coefficient retrieval shows no clear pattern
in response to the prescribed surface elevation uncertainty,
regardless of the data resolution. However, when we vary
velocity observations errors while keeping elevation uncer-
tainty constant, we observe that reducing velocity errors im-
proves the estimation of the friction coefficient (Fig. A2), as
well as bed topography and ice thickness estimates. Given
our semi-idealized model domain and simplified error prop-
agation method, we do not derive specific error thresholds
for effective ice sheet model parameters and state estimation.
However, we note that a proper specification of observation
uncertainty is likely critical for accurate DA performance,
and the relative importance of velocity versus elevation un-
certainty depends on the specific variable being estimated.

Despite the promising results demonstrated in this study,
several limitations exist that must be acknowledged and ad-
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dressed in future research. First, our study utilizes yearly syn-
thetic observations with uniformly homogeneous error vari-
ance, which do not fully capture the complexities and vari-
ability present in real observations. In addition, we assume
full spatial and temporal coverage of velocity data to isolate
and focus on the impact of surface elevation observations.
While this simplifies the analysis, it is an idealized scenario;
future research should explore more realistic data configu-
rations, including partial velocity coverage, and assess the
trade-offs between observation density, cost, and assimila-
tion performance. A joint analysis of surface and velocity
observations would provide a more robust understanding of
their relative contributions to improving model estimates. Fu-
ture research should also consider more sophisticated meth-
ods to account for observations from diverse sensors, cov-
erage, varying periods, state dependence, and collection fre-
quencies, as well as their associated error covariance matri-
ces. This includes conducting more comprehensive OSSEs
with a broader range of potential observations.

Additionally, this study focused on only one filter algo-
rithm with a limited range of inflation and localization fac-
tors, which may not adequately explore the full potential and
scalability of the DA method. Future studies should investi-
gate different types of filter algorithms and a variety of infla-
tion and localization techniques to better optimize the assim-
ilation process for ice sheet modeling. Furthermore, incorpo-
rating more comprehensive climate processes could enhance
the predictive capabilities of our simulations. For example,
integrating the firn process into the model could help not only
in accurately modeling the grounding line position (Gillet-
Chaulet, 2020) but also in properly determining observation
errors in the DA process.

Although ensemble-based data assimilation offers concep-
tual and practical advantages, its computational cost is often
considered a limiting factor. In this study, we did not perform
a direct computational comparison between ensemble and
variational (transient) DA approaches. Such a comparison is
challenging due to their fundamentally different implemen-
tations. For example, variational DA in ISSM relies on auto-
matic differentiation (AD), which can be memory-intensive,
whereas ensemble DA increases computational cost primar-
ily through the need for multiple forward simulations and as-
similation steps. However, ensemble approaches can be par-
allelized, as each ensemble member’s forward run can be
distributed across separate cores or nodes, and the DA pro-
cess here is managed through DART, which supports parallel
computing. To provide a sense of computational resources
for ensemble DA, we compared runs with identical ensem-
ble sizes but different numbers of assimilation cycles over the
same 30-year assimilation window: 30 annual cycles versus
60 semiannual cycles. For an ensemble size of 50 on a Broad-
well node with 28 cores, the 30-cycle run required approxi-
mately 2.9 h of walltime, while the 60-cycle run required ap-
proximately 5.2 h. Because both runs cover the same forecast
period, the additional cost in the 60-cycle case reflects the
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more frequent execution of the DART analysis step and asso-
ciated I/O (e.g., conversion between ISSM and DART). A di-
rect comparison of per-cycle times is not strictly meaningful,
since the forecast interval in each cycle is shorter in the semi-
annual case, but the nearly doubled walltime for the 60-cycle
case suggests that the analysis step and associated I/O repre-
sent a significant fraction of the total computational time. As
a result, scaling to larger ensembles or higher-frequency up-
dates will likely increase computational demands due to the
analysis step and its I/O requirements. While formal bench-
marking was beyond the scope of this study, it would be
valuable in future work to quantify computational trade-offs
across DA methods in ice sheet modeling.

Our experimental design also assumed perfect knowledge
of all model parameters except for basal friction and bed to-
pography. This choice was made to facilitate learning about
the DA system in a controlled setting and to keep the ex-
perimental setup more tractable, while also allowing for di-
rect comparison with Gillet-Chaulet (2020). However, this
approach limits the realism of experiments. In practice, pa-
rameters such as ice viscosity and climate forcing are also
poorly constrained and may vary in both space and time. For
example, uncertainties in viscosity may interact with basal
friction during assimilation, potentially leading to parame-
ter compensation effects. Future sensitivity studies should
explore how mis-specified background parameters (e.g., bi-
ased viscosity fields) affect the estimation of other parame-
ters and whether such compensation leads to biased or un-
stable forecasts. Although this study focuses on estimat-
ing two constant-in-time parameter fields (friction coefficient
and bed topography), the DART-ISSM framework is well-
suited for the joint estimation of multiple spatially or tem-
porally varying parameters. Extending the current configu-
ration to include additional unknowns — such as ice viscos-
ity, accumulation rate, or time-varying boundary conditions
— represents a valuable next step toward more realistic data
assimilation in ice sheet modeling.

5 Conclusions

In this study, we introduce an ensemble Kalman filter-based
data assimilation (DA) framework to calibrate a 2D plan-
view ice model. Using a synthetic twin experiment, we
showed that the ensemble DA method effectively recovers
basal conditions (friction coefficient and bed topography)
and ice thickness after several assimilation cycles. While a
temporal decline in DA performance is observed during the
assimilation period — likely due to model nonlinearity — as-
similating more observations generally improves the accu-
racy of the model state and parameters. With 30 years of
assimilated surface observations, the deterministic forecast
reproduces the total ice volume change of the reference sim-
ulation within approximately 1% over a 200-year period.
We also conduct Observing System Simulation Experiments
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(OSSEs) using the same model domain as the twin experi-
ment but with synthetic elevation observations along ground
track and gridded data that emulate the ICESat-2 ATL11 and
ATL15 products, respectively. These experiments present the
potential surface elevation product that can be used to accu-
rately estimate bed conditions and the model state of the ide-
alized glacier. The results highlight the crucial role of spatial
resolution of surface elevation data in the DA performance.
In addition, we find that varying levels of observational un-
certainty — not necessarily smaller — can lead to improved
assimilation outcomes, which highlights the importance of
a more accurate representation of observation uncertainty in
the DA process. The ensemble DA framework, which assim-
ilates observations from multiple time points, holds signif-
icant potential for application to real glaciers to better esti-
mate the current and future changes in ice sheet state vari-
ables. This framework also provides advantages for OSSEs
aimed at testing various observational settings, as it requires
less numerical effort than variational methods that assimilate
time series of observations, making it a practical and effec-
tive tool in ice sheet modeling.

Appendix A

We conduct additional experiments to assess the impact of
assimilation frequency and different levels of velocity uncer-
tainty on the results. We use full spatial coverage of surface
velocity and elevation data — as in the twin experiments — to
avoid the influence of spatial data gaps (e.g., in surface ele-
vation).
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