Articles | Volume 19, issue 10
https://doi.org/10.5194/tc-19-4929-2025
https://doi.org/10.5194/tc-19-4929-2025
Research article
 | 
23 Oct 2025
Research article |  | 23 Oct 2025

Similarities between sea ice area variations and satellite-derived terrestrial biosphere and cryosphere parameters across the Arctic

Annett Bartsch, Rodrigue Tanguy, Helena Bergstedt, Clemens von Baeckmann, Hans Tømmervik, Marc Macias-Fauria, Juha Lemmetyinen, Kimmo Rautiainen, Chiara Gruber, and Bruce C. Forbes

Related authors

Challenges in the use of local data for regional scale mapping of C and N stocks in the continuous permafrost zone at the Yukon Coastal Plain
Julia Wagner, Juliane Wolter, Justine Ramage, Victoria Martin, Andreas Richter, Niek Jesse Speetjens, Jorien E. Vonk, Rachele Lodi, Annett Bartsch, Michael Fritz, Hugues Lantuit, and Gustaf Hugelius
SOIL, 12, 113–132, https://doi.org/10.5194/soil-12-113-2026,https://doi.org/10.5194/soil-12-113-2026, 2026
Short summary
Spatial heterogeneity in post-fire permafrost evolution as revealed by satellite radar observations
Barbara Widhalm, Annett Bartsch, and Benjamin Jones
EGUsphere, https://doi.org/10.5194/egusphere-2025-6205,https://doi.org/10.5194/egusphere-2025-6205, 2026
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
A satellite-based ice fraction record for small water bodies of the Arctic Coastal Plain (2017 to 2023)
Hong Lin, Jinyang Du, John S. Kimball, Xiao Cheng, J. Patrick Donnelly, Jennifer D. Watts, and Annett Bartsch
Earth Syst. Sci. Data, 18, 535–549, https://doi.org/10.5194/essd-18-535-2026,https://doi.org/10.5194/essd-18-535-2026, 2026
Short summary
High-resolution remote sensing and machine-learning-based upscaling of methane fluxes: a case study in the Western Canadian tundra
Kseniia Ivanova, Anna-Maria Virkkala, Victor Brovkin, Tobias Stacke, Barbara Widhalm, Annett Bartsch, Carolina Voigt, Oliver Sonnentag, and Mathias Göckede
Biogeosciences, 23, 233–262, https://doi.org/10.5194/bg-23-233-2026,https://doi.org/10.5194/bg-23-233-2026, 2026
Short summary
WetCH4: a machine-learning-based upscaling of methane fluxes of northern wetlands during 2016–2022
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data, 17, 2507–2534, https://doi.org/10.5194/essd-17-2507-2025,https://doi.org/10.5194/essd-17-2507-2025, 2025
Short summary

Cited articles

Alexeev, V. A., Arp, C. D., Jones, B. M., and Cai, L.: Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska, Environmental Research Letters, 11, 074022, https://doi.org/10.1088/1748-9326/11/7/074022, 2016. a, b
AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, Tech. rep., Arctic Monitoring and Assessment Programme (AMAP), Oslo, xiv + 269 pp., https://www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-2017/1610 (last access: 2 January 2022), 2017. a, b, c, d, e
AMAP: AMAP Arctic Climate Change Update 2021: Key Trends and Impacts. Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway, Tech. rep., Arctic Monitoring and Assessment Programme (AMAP), Tromsø, viii + 148 pp., https://www.amap.no/documents/doc/amap-arctic-climate-change-update-2021-key-trends-and-impacts/3594 (last access: 2 January 2025), 2021. a
Anonymous: Referee Comment 1, Comment on egusphere-2025-1358, https://doi.org/10.5194/egusphere-2025-1358-rc1, 2025. a
Anttila, K., Manninen, T., Jääskeläinen, E., Riihelä, A., and Lahtinen, P.: The Role of Climate and Land Use in the Changes in Surface Albedo Prior to Snow Melt and the Timing of Melt Season of Seasonal Snow in Northern Land Areas of 40–80° N during 1982–2015, Remote Sensing, 10, 1619, https://doi.org/10.3390/rs10101619, 2018. a
Download
Short summary
We identified similarities between sea ice dynamics and conditions on land across the Arctic, above 60° N, for 2000–2019. Significant correlations  were more common for snow water equivalent and permafrost ground temperature than for the vegetation parameters. Changes across all the different parameters could specifically be determined for eastern Siberia. The results provide a baseline for future studies on common drivers of essential climate variables and causative effects across the Arctic.
Share