Articles | Volume 19, issue 10
https://doi.org/10.5194/tc-19-4819-2025
https://doi.org/10.5194/tc-19-4819-2025
Research article
 | 
21 Oct 2025
Research article |  | 21 Oct 2025

Sea ice concentration estimates from ICESat-2 linear ice fraction – Part 2: Gridded data comparison and bias estimation

Christopher Horvat, Ellen Buckley, and Madelyn Stewart

Related authors

Sea ice concentration estimates from ICESat-2 linear ice fraction – Part 1: Multi-sensor comparison of sea ice concentration products
Ellen M. Buckley, Christopher Horvat, and Pittayuth Yoosiri
The Cryosphere, 19, 4805–4818, https://doi.org/10.5194/tc-19-4805-2025,https://doi.org/10.5194/tc-19-4805-2025, 2025
Short summary
Langmuir Turbulence in the Arctic Ocean: Insights From a Coupled Sea Ice –Wave Model
Aikaterini Tavri, Chris Horvat, Brodie Pearson, Guillaume Boutin, Anne Hansen, and Ara Lee
EGUsphere, https://doi.org/10.5194/egusphere-2025-3438,https://doi.org/10.5194/egusphere-2025-3438, 2025
Short summary
A method for constructing directional surface wave spectra from ICESat-2 altimetry
Momme C. Hell and Christopher Horvat
The Cryosphere, 18, 341–361, https://doi.org/10.5194/tc-18-341-2024,https://doi.org/10.5194/tc-18-341-2024, 2024
Short summary
Summer sea ice floe perimeter density in the Arctic: high-resolution optical satellite imagery and model evaluation
Yanan Wang, Byongjun Hwang, Adam William Bateson, Yevgeny Aksenov, and Christopher Horvat
The Cryosphere, 17, 3575–3591, https://doi.org/10.5194/tc-17-3575-2023,https://doi.org/10.5194/tc-17-3575-2023, 2023
Short summary
Altimetric observation of wave attenuation through the Antarctic marginal ice zone using ICESat-2
Jill Brouwer, Alexander D. Fraser, Damian J. Murphy, Pat Wongpan, Alberto Alberello, Alison Kohout, Christopher Horvat, Simon Wotherspoon, Robert A. Massom, Jessica Cartwright, and Guy D. Williams
The Cryosphere, 16, 2325–2353, https://doi.org/10.5194/tc-16-2325-2022,https://doi.org/10.5194/tc-16-2325-2022, 2022
Short summary

Cited articles

Bennetts, L. G., Bitz, C. M., Feltham, D. L., Kohout, A. L., and Meylan, M. H.: Theory, modelling and observations of marginal ice zone dynamics: Multidisciplinary perspectives and outlooks, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380, 20210265, https://doi.org/10.1098/rsta.2021.0265, 2022. a
Brucker, L., Cavalieri, D. J., Markus, T., and Ivanoff, A.: NASA Team 2 Sea Ice Concentration Algorithm Retrieval Uncertainty, IEEE Transactions on Geoscience and Remote Sensing, 52, 7336–7352, https://doi.org/10.1109/TGRS.2014.2311376, 2014. a
Buckley, E. M., Horvat, C., and Yoosiri, P.: Sea ice concentration estimates from ICESat-2 linear ice fraction – Part 1: Multi-sensor comparison of sea ice concentration products, The Cryosphere, 19, 4805–4818, https://doi.org/10.5194/tc-19-4805-2025, 2025. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t
Buckley, E. M., Farrell, S. L., Duncan, K., Connor, L. N., Kuhn, J. M., and Dominguez, R. T.: Classification of Sea Ice Summer Melt Features in High‐Resolution IceBridge Imagery, Journal of Geophysical Research: Oceans, 125, https://doi.org/10.1029/2019JC015738, 2020. a
Cavalieri, D. J., Gloersen, P., and Campbell, W. J.: Determination of sea ice parameters with the NIMBUS 7 SMMR, Journal of Geophysical Research: Atmospheres, 89, 5355–5369, https://doi.org/10.1029/JD089iD04p05355, 1984. a
Short summary
Since the late 1970s, standard methods for observing sea ice area from satellites have contrasted its passive microwave emissions to those of the ocean. Since 2018, a new satellite, ICESat-2, may have offered a unique and independent way to sample sea ice area at high skill and resolution, using laser altimetry. We develop a new product of sea ice area for the Arctic using ICESat-2 and constrain the biases associated with the use of altimetry instead of passive microwave emissions.
Share