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Abstract. Sea ice coverage is a key indicator of changes in
the global climate. Estimates of sea ice area and extent are
primarily derived from satellite measurements of surface mi-
crowave emissions, from which local sea ice concentration
(SIC) is derived. Passive microwave (PM) satellite sensors
remain the sole global product for understanding SIC vari-
ability but may be sensitive to consistent biases. In Part I
(Buckley et al., 2025) we explored these in a multi-sensor in-
tercomparison of optical, passive microwave, and lidar data,
showing that a new SIC product, the linear ice fraction (LIF),
derived from ICESat-2 (IS2) laser altimetry, could be used to
quantify and understand PM SIC biases. Here in Part II, we
develop and assess the reliability of larger-scale estimates of
SIC from IS2 LIF. We develop an LIF emulator that sam-
ples optical imagery using the distribution of possible ori-
entation angles for IS2 to understand the limitations of this
one-dimensional product. We find that the error qualities of
the LIF product are improved when combining multiple I1S2
tracks and discuss intrinsic but correctable biases that emerge
in the combination of multiple IS2 measurements. We use
these to develop a monthly LIF product, covering up to 46 %
of the Arctic sea ice cover, which has similar or better er-
ror qualities compared to PM data, subject to uncertainties
in surface-type classification associated with surface melting
and differences between 1S2’s weak and strong beams. We
then discuss pathways to improving LIF and enhancing PM-
SIC data in the future.

1 Introduction

Sea ice concentration (SIC), the fraction of an ocean area
covered by sea ice, is critically important for understand-
ing polar climate variability. SIC is estimated globally us-
ing passive microwave (PM) satellites at both hemispheres,
with PM-derived SIC the standard for assessing sea ice state
and change (Meredith et al., 2022). Increasingly, SIC prod-
ucts are assimilated into state-of-the-art forecast and climate
models at both hemispheres (Mazloff et al., 2010; Sakov
et al., 2012; Massonnet et al., 2015; Verdy and Mazloff,
2017; Fritzner et al., 2019; Zhang et al., 2021), making po-
tential improvements in global SIC observations important
for accurate climate analysis and prediction. Local errors in
PM SIC are observed to have a compensating effect when
integrated over the Arctic or Antarctic; hence the impact of
algorithmic uncertainty or bias on estimates of total (Arctic
or Antarctic) sea ice area is estimated to be small, even in
summer (Notz, 2015; Meier and Stewart, 2019; Kern et al.,
2020). Still, no remote sensing alternatives to PM exist for
measuring SIC from local to global scales that do not require
information about the PM signature of sea ice.

In Part 1 of this two-part study (Buckley et al., 2025), we
compared daily retrievals from state-of-the-art PM sensors
and PM-SIC algorithms against high-resolution optical data
from NASA’s Operation IceBridge (OIB). We calculated SIC
from optical imagery by applying a surface-type classifica-
tion algorithm (Buckley et al., 2020) to the images, defining
each pixel as open water, sea ice, or melt pond, and deter-
mined a sea ice concentration for each ~ 400 m by ~ 600 m
image. We found that PM-SIC products demonstrated con-
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sistent positive biases (1 %—6 %) over compact sea ice, po-
tentially because of the presence of small crack features in
the sea ice mosaic that cover a limited portion of the over-
all surface and are challenging to capture with large PM grid
sizes (6.25 to 25 km cells), similar to findings in related stud-
ied of PM-SIC and optical data (Kern et al., 2019). However,
these fractures may contribute greatly to air—sea exchange.
This intercomparison showed a wide uncertainty range for
PM-SIC summer months (May—September) because of the
well-known challenges in retrieval of SIC over ponded sea
ice. Part I includes details of these biases and limitations of
PM products.

We showed in Part I that NASA’s ICESat-2 satellite (IS2)
can be used to develop a linear SIC estimate, which we call
the linear ice fraction (LIF), which has reduced or simi-
lar bias compared to PM over a set of imagery coincident
with IS2 overflights in Arctic winter conditions. IS2 is a
photon-counting laser altimeter with 0.7 m along-track sam-
pling, an 11 m footprint, and high skill in differentiating sea
ice and open water in non-summer months (Farrell et al.,
2020; Kwok et al., 2020, 2021). IS2 can resolve Arctic leads
at the meter scale (Petty et al., 2021; Kwok et al., 2021),
especially in winter, when leads are the primary source of
air—sea exchange. The geographic extent of LIF can depend
on PM SIC because ATL0O7 segments are only produced in
regions where SIC from the NSIDC Climate Data Record
(Meier et al., 2021) exceeds 15 %. LIF itself is derived ex-
clusively from the classification of IS2 photon returns (at
a wavelength of 532nm) and does not rely on microwave
emissions (wavelengths on the order of 1 cm) or related algo-
rithms and therefore has independent and separate uncertain-
ties from PM SIC. Such uncertainties are presently uncon-
strained and, thus, potentially larger than PM-SIC products,
which are the focus of this work.

Here we explore error bounds with IS2 LIF and the pos-
sibility of using multiple consecutive IS2 passes to build a
gridded LIF product on monthly timescales. We first discuss
the uncertainties that will arise when building an [S2-derived
gridded product. To understand them, we develop an IS2 em-
ulator which we apply to the optically classified sea ice data
explored in Buckley et al. (2025) in Sect. 2.1, using it to de-
rive bounds on how unsupervised errors in SIC retrieval de-
cay as a function of the number of intersections of the sea ice
surface by IS2.

Using the error bounds obtained from emulation, in
Sect. 3, we build a monthly Arctic LIF product that covers
roughly 60 % of Arctic seasonal sea ice extent and explore
differences between it and a set of commonly used PM-SIC
products at different resolutions. Over these areas, PM SIC is
approximately 3 %—4 % higher in non-summer months, with
LIF estimating approximately twice as much open water than
PM-SIC products, similar to what was obtained from opti-
cal comparisons. Finally, we explore prospects for improving
LIF skill and how, either in single IS2 passes or as a gridded
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product, it could be used to augment existing PM SIC data in
Sect. 4.

2 ICESat-2 and the linear ice fraction

IS2 is a six-beam laser altimeter with high precision and skill
in retrieving sea ice properties (e.g., Kwok et al., 2019a).
In this work, and in Buckley et al. (2025), we use Version
6 of the sea ice height product, ATLO7, which generates
along-satellite-track “segments” from collections of sequen-
tial 150 photons (Kwok et al., 2023). Based on the statis-
tical properties of such photons retrievals, each segment is
identified with a surface type (water, ice, or cloud covered)
(Kwok et al., 2019b). These segments are provided in loca-
tions where the local daily NSIDC-CDR sea ice concentra-
tion exceeds 15 % and their length averages ~ 15 m for the
three strong beams and ~ 60 m for the three weak beams
(Kwok et al., 2019a).

For any collection of measured IS2 segments, we define
the IS2 linear ice fraction (LIF) as

LIF — 100 x —\ength of ice segments

)]

length of all surface segments

We represent the LIF as a percentage for consistency with
typical usage of SIC data. The details of the ATLO7 segment-
type classification can be found in the Algorithm Theoreti-
cal Basis Document (Kwok et al., 2019a), and we follow the
preprocessing methods in Horvat et al. (2020b). We exclude
all cloud segments, sections with fewer than two segments
within 1km along track, and all segments over 200 m long.
Although LIF is calculated with a high-precision instrument
and not subject to the passive microwave biases in SIC deter-
mination, we note other independent sources of uncertainty.

U1: Classification uncertainty. The construction of LIF re-
lies upon the IS2 ATLO7 classification of along-track
segments of the ice-ocean surface as being ice or two
types of open water: “specular” leads and “dark” leads.
Uncertainty and errors in the ice-water discrimination,
which is higher in summer due to the presence of melt-
water on the ice surface (Tilling et al., 2020; Farrell
et al., 2020; Koo et al., 2023), could lead to systematic
error in LIF calculations.

U2: Orientation uncertainty. The relative orientation of
near-linear features in the sea ice mosaic is unknown
with respect to the satellite path. While the local az-
imuth of the IS2 satellite is constrained as a function
of latitude (see Fig. 1 and Sect. 2.1), the orientation
of sea ice features is not. This can distort the fraction
of the observed surface that is ice or open water if the
alignment of cracks and IS2 ground tracks is correlated
(Rothrock and Thorndike, 1984; Horvat et al., 2020a;
Hell and Horvat, 2024).
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U3: Coverage uncertainty. PM satellite products yield
daily SIC observations, even in cloudy conditions. 1S2,
however, makes approximately 15 orbits each day, with
its six beams covering a region approximately 6.6 km
across, and its photons do not reach the sea ice sur-
face through optically thick clouds. IS2 cannot pro-
duce specific measurements of the sea ice surface at any
one location at the daily or twice-daily repeat time of
PM satellites. Gridded products can only therefore be
formed by averaging temporally intermittent IS2 sam-
ples over longer periods than the daily or twice daily
PM repeat timescale.

Improving classification uncertainty (U1) is an important
area of research within the IS2 science team (Petty et al.,
2021; Koo et al., 2023; Liu et al., 2025). This source of un-
certainty is not the focus of this work, but constraining its
impact on LIF-SIC comparisons is important for understand-
ing the quality of LIF estimates. In Buckley et al. (2025),
we explored Ul by intercomparing IS2 overflights and PM-
SIC measurements over four coincident high-resolution opti-
cal images. The present classification scheme in ATLO7 ver-
sion 6 yields single-pass LIF (LIF;) values similar to or bet-
ter than PM-SIC products in their estimation of SIC — with a
single overflight of IS2 over an image leading to an average
2.4 % bias, with PM-SIC biases over the same areas of 2.9 %
or greater and averaging 3.8 % (Buckley et al., 2025). Here a
“crossing” refers to the independent sampling of the sea ice
surface by one IS2 beam, whereas an “overflight” refers to
a general sampling of the surface by the IS2 satellite — this
leads to six “crossings” by the three weak and three strong
beams. Because the azimuthal angles of beam crossings are
heavily constrained as a function of latitude (see Fig. 1), we
consider each beam in an overflight as an independent sam-
pling of the surface, and below in Sect. 4 we consider differ-
ences between weak and strong beams.

Still, even when IS2 classification is “perfect”, by sam-
pling the “true” classification data from the optical imagery
along the ATLO7 footprints, the “best-case” error is 1.0 %
in the set of imagery examined. Thus uncertainty Ul intro-
duces, in this selected set of imagery, a bias of approximately
1.4 %. In this case, the 1.0 % “best-case” error is uncertainty
U2, which is related to the incomplete sampling of the sea
ice surface due to the one-dimensional coverage by the 1S2
ground tracks, as well as the unknown relative orientation of
IS2 ground tracks and geometric features of the sea ice mo-
saic.

Since the orientation and coverage of an area of sea ice are
random a priori, repeat crossings of the same region should
reduce the error associated with uncertainty U2. However,
sea ice dynamic and thermodynamic variability can change
the makeup of the sea ice surface in a specified grid. The
repeat time of IS2 ground tracks is 91d, and the frequency
with which IS2 orbits will intersect a given grid varies with
latitude and can be several days. Combining repeated and un-
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supervised IS2 overflights at different times to form an LIF
product therefore will introduce uncertainty U3 associated
with unknown coverage. When building a gridded LIF prod-
uct, some compromise is therefore needed between incorpo-
rating more repeat tracks (reducing U2), incorporating more
variable ice (increasing U3), and maintaining a useful tem-
poral resolution of the gridded product.

In this study, we endeavor to encompass the largest sea-
ice-covered-area as possible while still minimizing error U2.
To evaluate how such a product can be built, we build an
IS2 emulator, which simulates IS2 passing over the same op-
tically classified sea ice as was examined in Buckley et al.
(2025). We use this emulator to investigate the statistics of
U2 as a function of crossing number in Sect. 2.1. To min-
imize U3, we design a monthly product that only provides
data in areas with limited intra-month variability in SIC de-
rived from PM satellites and detail the requirements of this
product in Sect. 3 when comparing the gridded LIF data to
PM-SIC datasets.

2.1 Estimating ground-track-related orientation
uncertainty (U2) in LIF using emulation

To understand orientation uncertainty U2, we build an IS2
emulator, schematically shown in Fig. 2 over an example
OIB image. The emulator code is provided publicly in Hor-
vat (2024b) (see “Code and data availability”). We describe
the emulator in detail below, but in summary, for each im-
age we build a series of synthetic single-beam crossings that
match the known orientation of IS2 reference ground tracks
(RGTs) at the image location. The surface is then intersected
with a number of such appropriately oriented tracks, and LIF
is calculated for each along-track intersection. We apply this
technique to the full set of 70 000+ optically classified im-
ages described in Buckley et al. (2025). These images are
17000 scenes from the OIB summer campaign in July 2016
and July 2017 and 53 000 scenes from the winter campaign
in March and April 2018. Using this extensive dataset, we
can investigate how LIF error changes with the number of
passes and latitude.

We first identify each optically classified image with its
corresponding latitude. The distribution of RGT azimuths
(angles with respect to local north) varies as a function of
latitude alone and is specified according to the IS2 91d re-
peat cycle. Thus at each latitude, we identify the distribution
of possible RGT azimuths from the IS2 Technical Specifi-
cations (Neumann et al., 2019), with the probability distri-
bution shown in Fig. 1a. We sample from this distribution
at each latitude using inverse transform sampling to obtain a
distribution of RGT orientations for a Monte Carlo-style em-
ulation of the LIF computation. For most latitudes, the RGT
azimuth distribution has approximately only two possible di-
rections (Fig. 1b), though because of the increased track den-
sity, the distribution widens approaching the pole (compare
the azimuth PDF at 87° N (red) to 70° N (black)).
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Figure 1. Direction of IS2 transit with respect to a line of longitude (satellite azimuth) as a function of latitude. (a) Probability distribution
of azimuthal angle as a function of latitude for all Arctic IS2 RGTs. (b) Probability distribution for latitudes 70° N (black), 80° N (blue), or

87°N (red).
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Figure 2. Example application of IS2 emulator to a classified DMS image from OIB. (a) Classified optical image from OIB. Blue points are
water, and grey points are ice. Black lines are synthetic IS2 RGTs, which pass through randomly generated tie points (red dots) at the angle
distribution appropriate from Fig. 1. The SRGT leading to the most extreme bias is shown as a red line. (b) The total length of all pixels
sampled (blue) and the total length of ice pixels sampled (grey) for each SRGT crossing in (a). (¢) Single-pass LIF (LIF) estimates from
each crossing in (b) (red dots), with cumulative LIF,, derived by integrating crossings from (b) in order (solid black line). The true-image
SIC is given as a blue horizontal line. (d) The mean (black line) and standard deviation (shaded region) of the LIF,, bias from true SIC (black
line), evaluated using all possible permutations of crossings from (a) at cumulative step . Red line is B;‘, the “best-case bias” after sampling

all possible crossings. For this image, Bi* ~ 0.8 %.

Figure 2 shows the emulation procedure and statistics ob-
tained using the emulator applied to a single image from the
optically classified dataset used in Buckley et al. (2025). The
particular image shown in the Figure was acquired on 7 April
2018 north of the Beaufort Sea at 75.51°N, 159.3° W and

The Cryosphere, 19, 4819-4833, 2025

has a sea ice concentration of 92 %. We first take a sam-
ple from the appropriate RGT azimuth distribution for this
latitude, which at this latitude is approximately 8.75 and
—9.1° from due north. For each angle, we then randomly se-
lect a corresponding “tie point” in the image (red dots, a)
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and draw a straight-line crossing through that tie point at
the specified orientation angle (black lines). For each such
synthetic ground track (SGTy), we compute the length of
ice-covered points, Ly x, and ice-free points, Lo k, it inter-
sects and store them as a function of the SGT (Fig. 2b, blue
and grey lines). Because the classified imagery is provided
on an equal-area grid, we simply count the number of ice
and ocean points intersected by the SGT when evaluating
the along-track lengths. When applied to real IS2 data (see
Eq. 1 and Sect. 3 below), we compute the LIF by weigh-
ing ATLO7 segments by their length. We repeat this process
M =100 times for each image. Each of the M unique SGTs
has its corresponding single-crossing LIF, which for image i
we term LIF; | (red dots, Fig. 2c). Values of LIF; vary signif-
icantly given the complex geometry of the scene and distribu-
tion of possible tie points and orientation angles. This single-
crossing uncertainty for individual images was the subject of
analysis for a set of high-resolution images in Buckley et al.
(2025). Here for the example image (Fig. 2a), while the mean
(across all SGTs) difference between LIF; and the true SIC is
—1.7 %, the standard deviation is £ 13.55 %. On pass 8 (red
line, Fig. 2a), for example, the SGT intersects a large region
of open water, recording an LIF; of just 75.1 % (not shown
in (c)).

The potential high variance in LIF measured from single
crossings of the ice surface is uncertainty U2 and necessitates
the inclusion of multiple crossings in an ultimate LIF prod-
uct. To understand the relationship between crossing number
and LIF bias, we investigate the convergence of LIF values
towards an “optimal” LIF for each image, given its latitude
and the preferred orientation of IS2 RGTs. With a set of M
SGTs, there are M! different permutations of the set in which
the SGTs can be applied. At crossing number n, there are

(IZI ) = % unique possible SGT choices from this ini-
tial set that could yield an LIF estimate. Given an image, i,
crossing number 7, and ordered list of SGT indices K, we

define the LIF as
> Lk
keK

> Lix+Lok
keK

LIF; ,,xk = 100 x 2)

It is not practical to explore the entire phase space of all pos-
sible SGT crossings — instead for each image we select a set
of P unique sets formed from the SGT list of length M, by
sampling with replacement to form sets P; x of SGT indices.
By sampling with replacement, we form bootstrap estimates
of LIF statistics that can be applied in an operational context,
when fewer crossings may be available. Without loss of gen-
erality, we use the same set of indices for all images (as the
individual SGTs are randomly sampled in each image) and
drop the i subscript from P, P; y = P. Then for each cross-
ing number n € [0, M], and for each k € [1, P], we define the
LIF as
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n
Zl L1pj)
LIF; ¢ = 100 x ——= =
Zl Liph + Liri)
j=
length of ice points for the first # crossings in SGT permutation k 3)

length of all points for the first n crossings in SGT permutation k ’

where in this notation Py (j) is the jth index in the kth SGT
list. Each LIF; ,, p, is also identified with a bias value:

Bi,n,k :LIF[,n,k — SIC. (4)

With M = 100, we select a total number of P unique SGT
lists, with P = 1000 for each image — and therefore a set
of |P| x M = 100000 different estimates of LIF, varying the
crossing number and SGT ordering. In total, applied to the
70225 individually classified images, we have 7 billion emu-
lated LIF calculations. For a given image and crossing num-
ber, we use an overbar to denote the average over all SGT
replicates (the lists of SGT indices). For example, in image i
after n crossings, we define B; , = B, as the mean bias and
Si, n the standard deviation of LIF; , x across the P repli-
cates. For each image we define the “optimal” LIF, LIF:‘, that
is obtained as the bootstrap mean LIF using all M RGTs,

LIF;‘( =LIF; yr = ﬁ,’,M. )

From the “optimal LIF”, we also define the corresponding
“optimal bias”,

B = LIF! —SIC, (6)

which has a bootstrap standard error E; = S; y //P. We
treat B as the “best-case” U2 error, obtained by compil-
ing statistics from the 1000 replicates of 100 crossings of
the surface. For the image in Fig. 2, the value of B} is
0.8 %, the standard deviation of individual estimates of B}
is Si.m = 0.6 %, and the bootstrap standard error in B*s is
0.02 %. We examine the statistics of these quantities across
all OIB images below and as Fig. 3.

2.2 Bounds on orientation uncertainty as a function of
crossing number

Because each replicate is different, the progression from the
set of single-crossing LIFs, LIF; 1 x, to LIF; 1 s &~ LIF is as
well. This means that even when the best-case bias Blf" ~0,
there is uncertainty at smaller values of n associated with
the variable convergence to the best-case error. For example,
when accumulating SGT lengths as ordered in Fig. 2(b), we
obtain a sequential list of LIF, (dropping i and k) values,
plotted as a black line in Fig. 2c. The mean absolute bias is
less than 2.5 % after four crossings and less than 2.0 % after
eight crossings. However the approach to LIF* differs de-
pending on the replicate, and we can estimate the uncertainty

The Cryosphere, 19, 4819-4833, 2025
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in the estimate of LIF* by examining the standard deviation
across the replicates for each n, S,. In panel (d) of Fig. 2,
we plot both the bootstrap mean bias B,, (black line) and the
envelope £S5, (shaded curve). Here we visualize the conver-
gence to Sy = 0.6 %. For smaller n there can be substantial
variability in S,,: for example it takes five crossings for 2.5 %
to lie outside of the interquartile range of B, .

The uncertainty associated with the unknown sampling or-
der declines with increasing #, and for a given image we cap-
ture it using the standard deviation among replicates, S; ;.
In a practical application, we will want to know how many
intersections would yield an accurate depiction of the SIC,
given that we do not know the underlying set of image cross-
ings. This will be represented by the expected value of S; ,
across as many scenes as possible. We take the set of all
OIB images and apply the same sampling methodology as
detailed above in the example of Fig. 2. This leads to more
than 7 billion total replicate LIF; , x and biases B; , x, which
allows us to compute 700 000 sequential estimates of uncer-
tainty in the LIF S; , as a function of crossing number, as-
sociated with 70000 best-case-bias estimates B;. Here we
will denote an average across all images using angle brack-
ets — in this notation, (B;) = —0.06% is the mean best-
case bias across all images. The histogram of best-case bi-
ases B is shown as Fig. 3a, which shows the near-zero-
mean distribution, as expected given that the orientation be-
tween SGTs and sea ice features is random a priori. Best-
case biases are generally small, with an interquartile range
of (—0.60 %, 0.48 %) (shown as vertical solid black lines in
Fig. 3a) and a (5, 95) confidence interval of (—2.2 %, 2.1 %)
(vertical dashed black lines). The standard deviation of these
data is (S; m) = S* = 0.8 %, which we will use to represent
the fundamental uncertainty in the estimation of SIC with IS2
at a single location, up to 100 image crossings.

Asin Fig. 2d (black and red lines), at any crossing number,
the bootstrap-mean bias for each individual image approxi-
mates the best-case bias for that image: B; , x = E,-,,, ~ Bl.*
for all n. In Fig. 3(b), we show the mean across all images of
Ei,n as a function of crossing number, (B; , i) = (E)n as a
black line. As expected, the distribution of this field mirrors
B at all crossing numbers and is nearly zero. This demon-
strates that, emulated across the set of OIB images, the ex-
pected bias from applying the LIF is approximately zero for
any crossing number. Thus in a wide application of the LIF
to many scenes or many gridded locations, errors in the LIF
should approximately cancel out. Still, for accurately esti-
mating LIF in a single area or scene, we note there is sig-
nificant spread in the bias as a function of crossing number,
which results from the variability in sampling for each cross-
ing. In Fig. 3b, therefore, we shade the expected uncertainty
as a function of crossing number, (S; ) = (S),. Given the
near-zero expected bias (B),, (S), is also the expected error
in SIC at crossing n. Whereas (B), quantifies the expected
bias for a typical scene, (S), quantifies the uncertainty in
the bias estimate for that particular scene. For a single cross-
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ing, we see that (S; 1) =9.02 % — which, while lower than
the single-crossing uncertainty from the example image in
Fig. 2, is still significant. This uncertainty declines with in-
creasing n. From the analysis of Buckley et al. (2025), we
found that a typical overestimation of SIC from PM products
compared to the OIB data was 2.5 %. Thus we are interested
in the number of crossings so that uncertainty in the typi-
cal LIF measurement is less than this. In Fig. 3b, as a solid
line we show the first value of n, which we call n*, with
(S)n < 2.5%. This occurs when n* = 11 crossings. While
at n* =11, (S), <2.5%, the distribution of ; ,+ is non-
uniform. We show the histogram of S; ,+ as Fig. 3c, along
with the interquartile range and (5, 95) intervals. The un-
certainty in the bias for any scene is positive—definite, 75 %
(95 %) of all S; ,+ values less than 3.63 % (6.35 %).

To summarize our findings, we implemented an emula-
tion system to draw accurately oriented IS2 “crossings” over
70000 segmented images from OIB. We find that there is
no systematic bias in LIF associated with the orientation of
tracks, i.e., (B), ~ (B*) =~ 0. While this implies that many
separate measurements of LIF will have an average bias near
zero, this is not true for individual scenes. The error in ap-
proximating SIC for a given scene declines with crossing
number, and after 11 crossings we find that the uncertainty
in estimating the SIC, (S; ,+), is less than 2.5 %. The distri-
bution of actual errors after 11 crossings has a long tail, but
95 % will have a bias below 6.35 %. Below, when develop-
ing a gridded LIF product, we will ensure that any grid cell
where LIF is reported and compared to PM SIC has at least
this many crossings.

3 A Global ICESat-2-based linear ice fraction product

Leveraging the uncertainty information obtained through
emulation, we next seek to build an SIC product built from
the IS2 LIF. As the data evaluation of Buckley et al. (2025)
focused on Arctic scenes, we will focus on Arctic data only —
though we do provide Antarctic LIF data in Horvat (2024a).
These data and code for generating a global gridded product
of LIF-based SIC are provided through the MATLAB-based
package IS2-Grid version 0.4 (Horvat, 2024a). This soft-
ware package is designed to produce modular gridded sea-
ice-related products at requested temporal and spatial grid-
ding through an accumulation of multiple tracks, for com-
parison with climate model and observational data. It permits
the rapid development of cumulative statistics over chosen
temporal windows and currently provides estimates of the
floe size distribution, significant wave height, and sequential
LIF along with other ancillary statistics. This code is modu-
lar and provides a simple way for creating gridded products
from along-track-calculated statistics. Here we use that code
to generate an LIF product on a monthly timescale on the
25 km Arctic polar stereographic grid.
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Figure 3. Statistics of bias and uncertainty associated with LIF when using data from all 70 225 classified OIB images. (a) Histogram of
best-case bias in SIC, B; = LIF;" — SIC. Vertical lines are interquartile range (solid, —0.60 % to 0.49 %) and (5,95) interval (dashed, —2.23 %
to 2.10 %). (b) Cross-image average of bootstrap-averaged bias (black line) as a function of intersection number, (B),. Shaded region
encompasses cross-image-average of bootstrap-averaged standard deviation (S),. Vertical line shows the crossing number, n* = 11, after
which (S), is less than 2.5 %. (c) Histogram of S; ,,+ at crossing number n*. Vertical lines are interquartile range (solid, 1.64 % to 3.63 %)

and (5, 95) interval (dashed, 0.49 % to 6.35 %).

This monthly 25km LIF dataset is evaluated against
six widely used PM-SIC products. Four rely on bright-
ness temperatures from the Special Sensor Microwave —
Imager/Sounders (SSMI/S) on board US Defense Meteo-
rological Satellite Program flight units 16-18. They are
(1) the NASATeam (NT) (Cavalieri et al., 1984) algorithm;
(2) the Bootstrap (BT) algorithm (Comiso and Sullivan,
1986); (3) the NSIDC Climate Data Record (CDR), equal to
the maximum of the Bootstrap and NASATeam algorithms
(Meier et al., 2014); and (4) the OSISAF Global Sea Ice
Concentration climate data record (OSI450-a, up to 31 De-
cember 2020) and interim climate data record (OSI430-a,
up to 2023) (Lavergne et al., 2019a). We also include two
algorithms using brightness temperature data from the Ad-
vanced Microwave Scanning Radiometer 2 (AMSR2) sen-
sor on board the JAXA GCOM-W satellite, computed us-
ing (5) the NASAteam?2 algorithm (Meier, 2018) and (6) the
ASI-ARTIST algorithm (Spreen et al., 2008). Products (1)—
(3) and (5) are provided on the NSIDC 25 km polar stereo-
graphic grid. We use OSI450/430 products (4) on the 25 km
EASE grid and (6) the ASI-ARTIST product on a 6.25km
polar stereographic grid, both of which we regrid to the
NSIDC 25 km polar stereographic grid. We analyze PM-SIC
and IS2 data across the time period from the launch of the IS2
satellite in October 2018 until December 2023 for 63 months
including 5 full calendar years. Further details on the PM-
SIC algorithms and satellite platforms used can be found in
Buckley et al. (2025).

3.1 Uncertainty in temporal sampling from IS2

In addition to the uncertainties with orientation and surface
classification, when building a longer-timescale product, we
must consider that IS2 overflights exhibit temporal intermit-
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tency compared to PM measurements that are retrieved daily.
At each grid point, we define an “IS2 intermittent” PM SIC,
¢, equal to the segment-averaged PM sea ice concentration
using the along-track-defined PM SIC. Two reference PM
datasets are included along track with the IS2 ATLO7 prod-
uct, the NSIDC CDR (all ATLO7 versions) and the AMSR2-
NT?2 product (ATLO6 v6 and later), and we use both for this
purpose. We define the “temporal intermittency bias”, Br,
from a monthly average SIC, ¢, as

Br=c—c. @)

The value of Bt measures how different the monthly PM-
SIC product would be if it included only data from the days
when IS2 flew overhead. Thus it estimates a potential bias
in SIC introduced by IS2’s intermittent temporal sampling.
As we do not want to consider this additional uncertainty, we
ignore any grid cell where || Bt| exceeds 2.5 % in either of
the AMSR2-NT2 or NSIDC-CDR products. This reduces the
number of grid cells over which we develop an LIF product.
We combine this restriction with the requirement that the grid
cell was intersected by at least 11 separate IS2 beam cross-
ings. We also require that all PM-SIC estimates have greater
than 15 % SIC at any location, eliminating any potential de-
pendency of intercompared LIF data on the PM-SIC 15 %
cutoff used to define ATLO7. In Fig. 4a, we plot sea ice ex-
tent for all PM products (dashed lines), equal to the sum of
grid areas where local PM SIC exceeds 15 %. We use the
quality control restrictions to define two further sea ice ex-
tents. The first is the “comparable” sea ice extent, which is
the sum of all grid areas where each local PM-SIC value ex-
ceeds 15 %. In Fig. 4 this is plotted as a solid black line. We
show the “LIF extent” as the comparable sea ice extent with
at least 11 IS2 beam crossings as a solid black line. Compa-
rable sea ice extent ranges from 3.7 and 14.1 x 10° km?. The
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Figure 4. Comparison of coverage of IS2 LIF data to commonly used PM-SIC products. (a) Arctic sea ice extent of 6 PM-SIC products
(dashed colored lines) compared to the area well-sampled by IS2 (black line, black scatter) from October 2018-December 2023. Black
line with blue scatter is the IS2 extent when excluding areas with more than 2.5 % dark lead fraction, LIFNp. “Summer months” have red
background. (b) Percentage of months from October 2018—December 2023 where PM-SIC record sea ice and IS2 tracks are sufficiently
dense. Red latitude circle shows average latitude of grid cells which have 15 % or more SIC in all PM products. Black latitude circle shows
average latitude of LIF extent. Dashed black circle shows average latitude of LIF extent in summer months.

LIF extent is smaller, ranging from 0.9 to 5.5 x 10%km?2. As
a percentage of the comparable sea ice extent, this is between
21 % and 46 % of the total. For comparison, if we do not im-
pose a restriction on || Bt||, the LIF extent ranges from 1.8
to 5.8x10%km? (from 21 % to 62 % of comparable sea ice
extent), with the most significant impact in summer months.

Because of the higher track density near the pole, areas
that make up the LIF extent are typically at high latitudes
and have correspondingly high SIC. In Fig. 4b, we plot the
fraction of all months when a grid cell both is “compara-
ble” (with sufficient SIC as recorded by PM algorithms) and
has enough IS2 crossings to be compared. For regions above
80°N, this is nearly all months. Whereas the average lati-
tude of the comparable sea ice points is 75.1° N, denoted by
a solid red line of latitude in Fig. 4b, it is 82.0° N for points
within the LIF extent, which is denoted by a solid black line
of latitude and is significantly more poleward. The densest
coverage of IS2 is at these high latitudes, in areas of compact
sea ice with leads. This makes LIF particularly appropriate
for comparison with PM SIC, given the focus of Buckley
et al. (2025) on the overestimation of SIC by PM in these
sea ice regions.

3.2 Comparison of gridded LIF data with passive
microwave products

Figure 5 shows histograms of SIC values (top row, b—g), and
the differences from LIF, A (bottom row, h—-m) for all data,
for each PM-SIC product. Figure S1 shows the distribution of
LIF values in each month for two LIF products. Qualitatively
and quantitatively, when including all dark leads as open wa-
ter (see below), the LIF distribution is different in the months
of July and August from the rest of the year, which is also
the case for some PM-SIC products. Including dark leads in
those months leads to a median LIF of 82 % and 84 %, com-
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pared to above 92 % in all other months. July and August are
also where melt ponding is significant at the high latitudes
we consider here (Istomina et al., 2025). To differentiate be-
tween these potentially melt-affected results, we segment the
LIF data into “summer” or pond-affected months covering
July and August (Fig. 5 red and gold) and “non-summer”
data covering September to June (Fig. 5, blue). The months
of June, September, and October also are distinct from the
other non-summer months in that the modal LIF is not 100 %.
While there are distinct histograms of PM SIC and LIF dur-
ing these months (see Table 1), they have significantly higher
LIF than in July and August, and the overall results of this
study are not materially affected by their inclusion as “non-
summer’” months.

3.3 Dark vs. specular leads in LIF retrievals

The IS2 surface type field includes two radiometrically
derived classification for open-water points: “specular” or
“dark” leads. Each could potentially be considered open-
water segments in this work. Leads in ICESat-2 are identified
where the ATLO7 segment has a high photon rate, a narrow
photon distribution, and Lambertian surface characteristics
as determined by the ratio of the photon rate to the back-
ground photon rate normalized by the sun elevation. Dark
leads are identified as the leads with the lowest photon rate.
These “dark leads” can be at least partially contaminated
with both open water and cloudy returns (Saha et al., 2024)
and are responsible for a significant difference between sum-
mer and non-summer LIF data due to known issues in classi-
fying surface meltwater in both PM and IS2 products (Kwok
etal., 2019b; Tilling et al., 2020; Farrell et al., 2020; Herzfeld
et al., 2023). In Fig. 5, we plot histograms in summer months
that include (gold) or exclude (blue) dark lead segments as
open water. We show histograms of the difference in the LIF
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Figure 5. (a) Histogram of IS2-LIF, using specular returns only in “summer” (July and August, red) and non-summer months (blue). Gold
shows LIF distribution in summer months when including dark leads. Top row: (b—g) same as (a) for the six PM-SIC products. Bottom row:
(h-m)) difference from PM-SIC products and the three LIF products in (a). Summary statistics are provided in Table 1. Vertical lines and
labels are mean A values between PM SIC and the corresponding LIF product.

between the two as Fig. S2 in the Supplement as a function
of month. We additionally show in Fig. 6a the difference be-
tween LIFgpec and LIF using all dark leads as open water in
summer and non-summer months. As seen in Fig. S2, the in-
clusion of dark lead classifications plays an important role
only in July and August but not in other months. The im-
pact of dark lead segments on the overall LIF distribution
can be seen in Fig. 5, where the shape of the LIF histogram
including all dark leads in summer months (gold histogram)
peaks at 81 %, with no areas of 100 % LIF. On average, in-
cluding dark leads as open water leads to a reduction in LIF
by 9.7 % in July and August. By contrast, the specular LIF
(blue) is significantly closer to 100 % and more closely re-
sembles both the non-summer LIF values (blue) and those
derived from PM algorithms (top row), up to the biases seen
in non-summer months. Outside of July and August, the net
impact of including dark leads in the LIF calculation is very
small as there are few dark leads contributing a mean differ-
ence in LIF of 0.4 % (Fig. 6a, blue histogram).

The peaked distribution of LIF including dark leads con-
trasts with the histogram of LIF values in all other months
(see “non-summer” months in Figs. 5 and S1 and S2), where
the histogram of LIF values increases monotonically as LIF
increases. As the characteristic response of leads likely does
not change season to season, this points to a potential role of
sea ice surface melt in altering the surface returns and possi-
ble misidentification of “dark lead” segments. Investigations
of summer sea ice melt have shown melt ponds identified as
both dark and specular leads (Farrell et al., 2020), and the
melting snow/slush layer may also be misclassified as leads.
Summer A values (right columns, Table 1, and vertical lines,
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Fig. 5Sh-m) are typically large and positive when including
these dark lead segments. Two PM-SIC products also show
a peaked distribution of SIC values in July and August, the
NASATeam and OSI-430 algorithms, which both are imple-
mented on the SSMI/S sensor platform. The OSI-430 al-
gorithm (Lavergne et al., 2019a) is tuned to represent the
NASATeam algorithm for high SIC values (Lavergne et al.,
2019b; see Sect. 3.2.4) and therefore may also reflect similar
biases in the Comiso and Sullivan (1986) algorithm. Anal-
ysis of NASATeam-based SIC data in Arctic summer has
shown these months to have both enhanced variability and
enhanced uncertainty (Brucker et al., 2014) related to melt
ponding. For the summer comparisons, the mean latitude of
comparable LIF data is 84.5° N (dashed line, Fig. 4). For each
calendar month, as in Fig. S4, we show the fraction of the
period when IS2 is operational and where we find sufficient
IS2 crossings to produce the LIF product. In most months
this is highly restricted to the highest latitudes, especially in
summer months. Sea ice in this region is typically compact.
Given the known uncertainty in both lead detection and PM-
SIC retrievals from the NASATeam over ponded sea ice, this
dually suggests that the low mean SIC and LIF values dur-
ing these months may be due to errors induced by surface
melting.

Because of the potential errors associated with dark lead
classification, the similarity in SIC histograms with other
PM-SIC products that are known to be biased or more un-
certainty in summer months, and the minimal impact of dark
leads outside of months with surface melting, here we pro-
vide the product that includes only “specular” leads as open
water in all months as the core LIF product, which we denote
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LIFspec. In the comparisons that follow, we also generate a
LIF product which masks any grid cells where the dark lead
fraction greater than 2.5 %, which we term LIFNp. The cov-
erage of this reduced dataset is plotted as a dashed black line
with blue scatter in Fig. 4a. Eliminating areas with high dark
lead fraction reduces LIF coverage by 85 % in summer but
just 3 % outside of the melt season and in total reduces LIF
extent by 18 % by significantly limiting summer intercom-
parisons.

Some dark lead segments are appropriately classified as
open water (Petty et al., 2021; Koo et al., 2023; Liu et al.,
2025; Buckley et al., 2025), and therefore LIF may be re-
duced by up to 0.4 % outside of the melt season or 9.7 %
in summer depending on what fraction of these dark leads
are truly non-sea-ice points. As discussed as uncertainty Ul
(classification uncertainty), some areas of open water may be
inappropriately classified as sea ice. Improved classification
of IS2 segments, including by adding additional radiomet-
ric features and machine learning (e.g., Liu et al., 2025), can
lead to enhanced confidence in LIF, especially in summer
months. We repeat Fig. 5 using LIFNp as Fig. S3 but find
this does not materially affect the qualitative and quantitative
analysis of biases between LIF and PM-SIC products that
follows. We focus our analysis on LIFs,e. alone but discuss
the implication and use of LIFnp in Sect. 4.

Statistics derived from the distributions shown in Fig. 4 is
given in Table 1, along with interquartile ranges and mean
differences from LIF, A. There are approximately 25000
“summer” comparison points, covering 17 x 10 km?, and
278000 “non-summer” comparison points, covering 182 x
10° km? — larger because of the larger spatial extent of sea
ice and greater number of months included. The sea ice ar-
eas being intercompared here are highly compact — with a
mean SIC for NSIDC-CDR of 98 % in summer and 99 %
non-summer months, reflecting a similar sea ice regime, as
was examined in Buckley et al. (2025), and the possibility of
overestimation of SIC in both seasons. All PM-SIC products
indicate a higher ice fraction than the LIF in all seasons. Non-
summer biases are similar to that found in OIB data as well
as in classified optical data, with a median positive difference
of 0.5 %-2.1 % for sea ice that was recorded by LIF as being
94.3 % ice-covered on average and 98.2 % on average for the
NSIDC-CDR PM-SIC product.

3.4 Strong vs. weak beam retrievals

IS2 has six separate beams, of which the three strong beams
have 4 times the energy of the weak beam and consequently 4
times the photon return and approximately 4 times the along-
track resolution (Markus et al., 2017). The difference in beam
energy leads to differences in the classifications of lead seg-
ments. We compute summary statistics of LIF data evaluated
using strong and weak beams alone in Table 1. To determine
the LIF using just a single beam strength, we apply the same
quality control on the reduced subset of IS2 crossings: for
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example we require at least 11 strong beam crossings to pro-
duce an LIF product in a given month and location. Doing so
restricts the area over which such products can be compared,
with the strong beam coverage just 55 % of the overall LIF
extent and the weak beam coverage just 51 %. In these areas,
we see significant biases between each and the overall LIF
product, which blends the two. From September—June, the
strong beam has an offset of —4.8 % from LIFgpec, whereas
the weak beam has a positive offset of 1.5 %. In this pe-
riod, months, weak-only LIF reports an SIC of 97.3 %, which
is similar in magnitude to that from the PM-SIC products,
whereas the strong-only LIF is significantly lower.

Since LIFgpec can include both weak and strong beams to
reach 11 crossings, to additionally compare a strong-only
and weak-only LIF product, we examine only those areas
where there are both 11 weak beam crossings and 11 strong
beam crossings. In those areas, we plot the summer and non-
summer histograms of LIF calculated using just weak beams
and just strong beams as Fig. 6b. Overall, this is an area cov-
ering 50 % of the LIF extent. In this area, weak-beam-only
LIF is on average 10.6 % higher than strong-beam-only LIF
from July—August and 6.3 % higher from September—June.
In non-summer months the modal weak-strong offset is near
0 %, but there is a peak in July and August around the mean
offset of 6.3 %.

The difference between strong and weak beams is caused
by an increased fraction of specular lead classifications by
the strong beam. The specular lead classification requires
a higher photon rate compared to the dark lead classifica-
tion and thus is more common in the beams with higher en-
ergy. In Fig. 6¢c we scatter dark (blue) and specular (orange)
lead fraction for the strong-only (y axis) or weak-only (blue
axis) LIF data. As in (b), these data are presented only for
grid areas where there are more than 11 strong and more
than 11 weak beam crossings, a total of 157000 distinct
measurements points. For those points, there is a high cor-
relation (r2 =0.97) between the dark lead fraction in the
two datasets, with the best linear fit (red line, slope 1.06)
nearly 1-1 (dashed black line). In contrast, there is still a
weaker correlation between respective specular lead frac-
tions (2 = 0.89), and the best linear fit is closer to 2—1 (blue
line, slope 2.18). Out of the 157 000 points, 133 000 (85 %)
have nonzero dark and specular lead fractions in both strong
and weak products. Of these, the median strong beam LIF
measurement has a specular lead fraction 5.3 % higher than
its corresponding weak beam LIF, but the median dark lead
fraction difference is just 0.06 %.

4 Conclusions

In this study, we developed a new gridded data product from
the IS2 laser altimeter, the LIF. We evaluated errors in the
representation of the sea ice surface using an emulator which
is run on a set of classified optical images from NASA’s OIB.
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Table 1. Comparison of “summer” (July and August) and “non-summer” (all other months) statistics of IS2 global LIF product and related
products and the set of six examined PM-SIC products. A values are differences from standard LIF product, which includes only specular
leads in summer and all leads in non-summer months. Values in parentheses next to strong/weak beam LIF products indicate fraction of LIF
extent with sufficient data. A is the mean difference from the LIF product LIFgpec. Values in parentheses show the interquartile range of As

(25 %175 % intervals). Percentages for LIF products are the fractions of total LIF coverage for each product.

Period ‘ July—Aug ‘ Sep-Jun
Number \ 25 x103 \ 288 x 103,
Area \ 17 x 106 km? \ 189 x 106 km?
Product | SIC AN(25%,75%) | SIC A (25%, 75 %)
Lead tvoe All leads 813%  —9.7% (—13.8,3.8) 948 —0.4% (—0.02,0.0)
2 P Specular leads 90.9 % o | 952% 2
Beam type (coverage) 00N beam (55%) | 85.2%  —6.7% (=9.1,=3.8) | 90.8%  —4.8 (~6.8,~19)
P £ Weak beam (51%) | 94.6% 23% (1.1,3.1) | 97.3% 1.5% (0.5,2.0)
Bootstrap 97.8% 6.9% (1.5,9.5) | 98.6% 3.4% (—0.3,4.8)
SSMU/S NASATeam 85.0% —59% (—11.8,—1.8) | 96.2% 1.0 (—2.0,3.3)
PMLSIC NSIDC-CDR 97.8% 6.9% (1.5,9.5) | 98.9% 3.7% (0.1,5.1)
0SI-430 90.6 % —0.4% (=5.7,3.3) | 97.8% 2.6 % (—0.6,4.4)
AMSR? AMSR2-NT2 97.5% 6.6% (1.3,9.0) | 98.8% 3.7% (—0.1,4.9)
AMSR2-ASI 96.4 % 55% (0.1,8.4) | 98.3% 3.2% (—0.3,4.8)
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Figure 6. (a) Histogram in “summer” (July—August, red) and “non-summer” (September—June, blue) months showing the difference between
LIF evaluated using specular returns only (LIFspec) and including dark leads as open water. (b) Same but for the LIF calculated using
only weak beams minus using only strong beams. Calculations for (a) are taken over the entire LIF extent. Calculations for (b) are taken
over the area where there are at least 11 separate strong beam and weak beam crossings, which is approximately 50 % of the LIF extent.
(¢) Comparison of dark (blue) or specular (orange) lead fraction for strong beams only (y axis) or weak beams only (x axis). Dashed black

line is 1:1 line. Solid red lines are linear fits to each respective set of data for all points with nonzero lead fraction.

We showed that, in general, PM-SIC measurements were
positively biased against IS2 estimates, particularly in non-
summer months, as was the case when compared to imagery
in Buckley et al. (2025) and in the previous literature (e.g.,
Kern et al., 2019). IS2 is particularly effective at estimating
SIC, even with a limited number of beam crossings, espe-
cially in regions of compact sea ice with leads. With further
validation of the ATLO7 surface classification scheme, this
product may help reduce open-water biases significantly.
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The IS2-LIF product is provided as a global, monthly
product covering 21 %—46 % of the Arctic sea ice zone. This
data product is available through December 2024 (see “Code
and data availability”). Because of the available comparative
data from OIB, we only included Arctic comparisons in this
work, though the data product has been made available in
both hemispheres. In months from September—June (‘“non-
summer”’), we found that the offset between LIF data and
PM-SIC product data was of the same order of the bias be-
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tween the OIB optically classified imagery and PM-SIC data
we found in Buckley et al. (2025). Because of this consis-
tency, we suggest that this captures an overestimation bias in
the PM-SIC products, and this offset is not from misclassifi-
cation error in the ATLO7 product. In periods of the year as-
sociated with surface melting (here, July and August, when
high-latitude sea ice is experiencing peak melt), we found
that high levels of possible misclassification of surface wa-
ter in the form of “dark leads” can degrade the quality of
the LIF product in similar ways to PM-SIC products. Be-
cause the impact of dark lead classifications on LIF is only
significant in these months, we suggest the use of only spec-
ular leads for calculating LIF, especially in months where
there is the potential for surface melting. Because of the am-
biguity in dark leads, we also examined a product which
eliminated grid cells with an appreciable dark lead fraction,
LIFNp. This leads to a substantial reduction in LIF extent
in summer months but little change in non-summer months.
Overall, non-summer month statistics are similar compared
to LIFpec (see Fig. S3), with larger positive offsets in the
PM data in summer. In general, because of the association of
dark leads with surface melting and errors in classification,
we advise excluding dark leads from the analysis by using
the “specular” LIF product LIF;pec.

In examining differences between IS2’s weak and strong
beams, we found that the classification of “dark” leads by
weak and strong beams was nearly identical as a portion of
overall sea ice segment length but that specular leads were
approximately twice as common in strong beam samples than
weak beam samples, similar to findings in Petty et al. (2021).
This leads to consistent weak—strong LIF differences of up
to 10 % in summer months. Since weak and strong beams
are sampling approximately the same sea ice, the difference
is likely a consequence of differences in the processing of sea
ice surface returns between the two products. The weak-only
LIF product aligns with estimates of SIC from PM-SIC prod-
ucts, but with a power and resolution one-quarter that of the
strong beams, it is possible that openings in the sea ice cover
are missed or averaged over that are captured by the strong
beam. In other studies, weak beam data can be degraded rela-
tive to strong beam data when evaluating variable along-track
statistics (Zhu et al., 2020), with strong beam measurements
of higher quality for reconstructing surface types from clas-
sified imagery (Liu et al., 2025). Future work aimed at under-
standing weak—strong differences in collocated imagery will
be important in understanding whether weak beam returns
should be disregarded or strong beam retrievals overestimate
the fraction of open water along track or a combination of
both.

While we have constrained the errors in LIF arising from
uncertain temporal and spatial sampling through emulation,
there is significant room to improve the LIF product through
surface-type classification. This comes about in two ways:
first by improving the classification of “dark lead” segments
in summer and second by constraining the differences be-
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tween weak and strong beam reconstructions of the surface.
Typical summer dark lead fractions are 9.7 %, and whether
this represents melt ponding, surface melt, or open water
can be further constrained. The variable inclusion of weak or
strong beams alters LIF significantly in all months, due to an
approximate doubling of specular leads in the strong beams
relative to the weak beams. Both weak-only and strong-only
products show an overestimation of SIC by PM products, but
the degree and importance of this overestimation should be
further understood and rectified by assessing which of the
two accurately depicts the sea ice surface.

The evaluation of LIF in representing local SIC primar-
ily focused on areas of compact sea ice in Buckley et al.
(2025), and because of the preprocessing steps employed in
generating the monthly LIF product, nearly all locations of
intercomparison in Sect. 3 were also compact ice. For ex-
ample, as indicated in Table 1, mean NSIDC-CDR in the
intercompared regions for producing Fig. 5 exceeds 98 % —
just 0.07 % of points had an NSIDC-CDR less than 80 %.
This limits the degree to which the 15 % NSIDC-CDR mask
used to define the ATLO7 can influence LIF data. The LIF
product has not yet been validated for low-concentration ice
or the CDR-defined marginal ice zones, and its utility in
those regions remains an open question, although these ar-
eas are critical for understanding overall sea ice variability
(Bennetts et al., 2022; Squire, 2022; Horvat, 2022). The LIF
product therefore may provide an independent and possibly
improved estimate of SIC in high-concentration, non-melt-
affected months, though it has not been examined in areas
where the sea ice has a low concentration or is highly vari-
able.

In general, evaluating LIFs,e. including both weak and
strong beam crossings, we find a positively skewed distribu-
tion of July—August SIC values in all PM-SIC products ex-
cept the NASATeam and OSI-430. As discussed, these two
PM-SIC products may be overly sensitive to surface melt-
ing. Other products all report compact sea ice and distribu-
tions of SIC that resemble non-summer months, with pos-
itive biases of 5.5% to 6.9 %. For example, compared to
the NSIDC-CDR, LIFgpec suggests there is more than 400 %
more open water in these months. In non-summer months,
we see overestimation biases in all PM-SIC products, with
from 1.0 % (NASATeam) to 3.7 % (NSIDC-CDR) more SIC
in the PM products, which varies depending on whether weak
beam data are included or excluded. Again, compared to
the NSIDC-CDR, LIF;pec suggests there is more than 400 %
more open water in compact ice zones at high latitudes in the
non-summer months. These overestimations match in mag-
nitude with the comparisons between IS2 and PM-SIC data
as well as comparisons between PM-SIC and optically clas-
sified OIB data in Buckley et al. (2025) as well as other in-
tercomparisons (Ivanova et al., 2015; Kern et al., 2019).

As it illuminates biases, particularly in compact sea ice in
non-summer months, LIF derived from IS2 offers an oppor-
tunity to enhance estimates of sea ice concentration. Under-
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estimations of SIC outside of the melt season may not be
large, but these differences correspond to large increases in
open water fraction, which can drive ocean and atmospheric
variability. Climate models that are tuned to reproduce sea
ice anomalies from PM satellites, or that assimilate PM SIC
for forecasts, may underestimate the magnitude of this air—
sea exchange. We used validation data from high-resolution
optical imagery and an emulation tool. It will be necessary
to enrich this LIF data with more constraints to ascertain the
year-round and repeat skill of LIF and its potential for devel-
oping a new SIC data product on shorter timescales. IS2 of-
fers a high-resolution and repeatable opportunity to provide
improved PM-SIC measurements and greater understanding
of overall sea ice variability in the polar seas.

Code and data availability. The monthly LIF product is
provided at https://doi.org/10.5281/zenodo.16950400  (Hor-
vat, 2025b). A release of the IS2 emulator is archived at
https://doi.org/10.5281/zenodo.13549563 (Horvat, 2024a) and ac-
cessible at https://github.com/antipodalclimate/IS2-Emulator (last
access: 9 October 2025). A release of the IS2 gridded product gener-
ation code is archived at https://doi.org/10.5281/zenodo.13549269
(Horvat, 2024b) and accessible at https://github.com/
antipodalclimate/IS2-Gridded-Products (last access: 9 Octo-
ber 2025). Code to reproduce paper figures and statistics is
archived at https://doi.org/10.5281/zenodo.15412480 (Horvat,
2025a) and available at https://github.com/antipodalclimate/
IS2-LIF-paper-2024 (last access: 9 October 2025).
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