Articles | Volume 19, issue 7
https://doi.org/10.5194/tc-19-2715-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-19-2715-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Numerical study of the error sources in the experimental estimation of thermal diffusivity: an application to debris-covered glaciers
Normandie Université – UNICAEN – UNIROUEN, CNRS, UMR 6143 M2C, Laboratoire Morphodynamique Continentale et Côtière, Caen, France
Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
Lindsey Nicholson
Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
Related authors
Giulia Magnarini, Anya Champagne, Costanza Morino, Calvin Beck, Meven Philippe, Armelle Decaulne, and Susan J. Conway
Earth Surf. Dynam., 12, 657–678, https://doi.org/10.5194/esurf-12-657-2024, https://doi.org/10.5194/esurf-12-657-2024, 2024
Short summary
Short summary
We show that Icelandic long-runout landslides with longitudinal ridges represent good analogues of Martian landforms. The large record of long-runout landslides with longitudinal ridges emplaced after the Last Glacial Maximum in Iceland offers a unique opportunity to study the possible relation between the development of these landforms and environmental conditions. This could have implications for reconstructing Martian paleoclimatic and paleoenvironmental conditions.
Jan Niklas Richter, Anselm Arndt, Nikolina Ban, Nicolas Gampierakis, Fabien Maussion, Rainer Prinz, Matthias Scheiter, Nikolaus Umlauf, and Lindsey Nicholson
EGUsphere, https://doi.org/10.5194/egusphere-2025-6249, https://doi.org/10.5194/egusphere-2025-6249, 2026
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We developed a multi-objective Bayesian framework to calibrate a surface energy balance (SEB) model using only publicly available satellite data and climate simulations. The framework constrains model parameters well but also reveals biases in the forcing, affecting the SEB and the simulated mass balance and snowlines. The results indicate that an uncertainty-aware model chain can help identify model errors and provides a first step towards physical glacier modelling without in-situ data.
Brigitta Goger, Ivana Stiperski, Matthis Ouy, and Lindsey Nicholson
Weather Clim. Dynam., 6, 345–367, https://doi.org/10.5194/wcd-6-345-2025, https://doi.org/10.5194/wcd-6-345-2025, 2025
Short summary
Short summary
We study with numerical simulations whether changing glacier ice surfaces impacts the atmospheric boundary layer structure over a glacier. Under north-westerly flow, a gravity wave forms over the glacier valley. When the surrounding upstream glaciers are removed, the gravity wave is weakened and breaks earlier. This leads to stronger turbulent mixing over the remaining glacier and to higher temperatures. We suggest that glaciers influence each other and should be studied as a connected system.
Giulia Magnarini, Anya Champagne, Costanza Morino, Calvin Beck, Meven Philippe, Armelle Decaulne, and Susan J. Conway
Earth Surf. Dynam., 12, 657–678, https://doi.org/10.5194/esurf-12-657-2024, https://doi.org/10.5194/esurf-12-657-2024, 2024
Short summary
Short summary
We show that Icelandic long-runout landslides with longitudinal ridges represent good analogues of Martian landforms. The large record of long-runout landslides with longitudinal ridges emplaced after the Last Glacial Maximum in Iceland offers a unique opportunity to study the possible relation between the development of these landforms and environmental conditions. This could have implications for reconstructing Martian paleoclimatic and paleoenvironmental conditions.
Adina E. Racoviteanu, Lindsey Nicholson, and Neil F. Glasser
The Cryosphere, 15, 4557–4588, https://doi.org/10.5194/tc-15-4557-2021, https://doi.org/10.5194/tc-15-4557-2021, 2021
Short summary
Short summary
Supraglacial debris cover comprises ponds, exposed ice cliffs, debris material and vegetation. Understanding these features is important for glacier hydrology and related hazards. We use linear spectral unmixing of satellite data to assess the composition of map supraglacial debris across the Himalaya range in 2015. One of the highlights of this study is the automated mapping of supraglacial ponds, which complements and expands the existing supraglacial debris and lake databases.
Cited articles
Adhikary, S., Seko, K., Nakawo, M., Ageta, Y., and Miyazaki, N.: Effect of surface dust on snow melt, Bulletin of Glacier Research, 15, 85–92, 1997. a
Anderson, R. S., Anderson, L. S., Armstrong, W. H., Rossi, M. W., and Crump, S. E.: Glaciation of alpine valleys: The glacier–debris-covered glacier–rock glacier continuum, Geomorphology, 311, 127–142, https://doi.org/10.1016/j.geomorph.2018.03.015, 2018. a, b
Beck, C. and Nicholson, L.: TC-DTD (v1.0.1), Zenodo [data set], https://doi.org/10.5281/zenodo.15829843, 2025. a
Benn, D., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L., Quincey, D., Thompson, S., Toumi, R., and Wiseman, S.: Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards, Earth-Sci. Rev., 114, 156–174, https://doi.org/10.1016/j.earscirev.2012.03.008, 2012. a
Bhambri, R., Bolch, T., Chaujar, R. K., and Kulshreshtha, S. C.: Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing, J. Glaciol., 57, 543–556, https://doi.org/10.3189/002214311796905604, 2011. a
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., and Scheel, M.: The state and fate of Himalayan glaciers, Science, 336, 310–314, https://doi.org/10.1126/science.1215828, 2012. a
Brock, B. W., Mihalcea, C., Kirkbride, M. P., Diolaiuti, G., Cutler, M. E., and Smiraglia, C.: Meteorology and surface energy fluxes in the 2005–2007 ablation seasons at the Miage debris-covered glacier, Mont Blanc Massif, Italian Alps, J. Geophys. Res.-Atmos., 115, D09106, https://doi.org/10.1029/2009JD013224, 2010. a
Cannon, J. R.: The one-dimensional heat equation, Cambridge University Press, https://doi.org/10.1017/CBO9781139086967, 1984. a
Collier, E., Nicholson, L. I., Brock, B. W., Maussion, F., Essery, R., and Bush, A. B. G.: Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach, The Cryosphere, 8, 1429–1444, https://doi.org/10.5194/tc-8-1429-2014, 2014. a, b
Crank, J. and Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Math. Proc. Cambridge, 43, 50–67, https://doi.org/10.1017/S0305004100023197, 1947. a
Deline, P. and Orombelli, G.: Glacier fluctuations in the western Alps during the Neoglacial, as indicated by the Miage morainic amphitheatre (Mont Blanc massif, Italy), Boreas, 34, 456–467, https://doi.org/10.1111/j.1502-3885.2005.tb01444.x, 2005. a
Evatt, G. W., Abrahams, I. D., Heil, M., Mayer, C., Kingslake, J., Mitchell, S. L., Flowler, A. C., and Clark, C. D.: Glacial melt under a porous debris layer, J. Glaciol., 61, 825–836, https://doi.org/10.3189/2015JoG14J235, 2015. a, b, c, d
Fontrodona-Bach, A., Groeneveld, L., Miles, E., McCarthy, M., Shaw, T., Melo Velasco, V., and Pellicciotti, F.: DebDab: A database of supraglacial debris thickness and physical properties, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-559, in review, 2025. a, b
Fourier, J.-B.-J.: The analytical theory of heat, Courier Corporation, ISBN 9781108001786/1108001785, 1955. a
Fyffe, C. L., Reid, T. D., Brock, B. W., Kirkbride, M. P., Diolaiuti, G., Smiraglia, C., and Diotri, F.: A distributed energy-balance melt model of an alpine debris-covered glacier, J. Glaciol., 60, 587–602, https://doi.org/10.3189/2014JoG13J148, 2014. a, b, c
Giese, A., Boone, A., Wagnon, P., and Hawley, R.: Incorporating moisture content in surface energy balance modeling of a debris-covered glacier, The Cryosphere, 14, 1555–1577, https://doi.org/10.5194/tc-14-1555-2020, 2020. a, b
Haidong, H., Yongjing, D., and Shiyin, L.: A simple model to estimate ice ablation under a thick debris layer, J. Glaciol., 52, 528–536, https://doi.org/10.3189/172756506781828395, 2006. a
Herreid, S. and Pellicciotti, F.: The state of rock debris covering Earth's glaciers, Nat. Geosci., 13, 621–627, https://doi.org/10.1038/s41561-020-0615-0, 2020. a, b
Inoue, J. and Yoshida, M.: Ablation and Heat Exchange over the Khumbu Glacier Glaciological Expedition of Nepal, Contribution No. 65 Project Report No. 4 on “Studies on Supraglacial Debris of the Khumbu Glacier”, Journal of the Japanese Society of Snow and Ice, 41, 26–33, https://doi.org/10.5331/seppyo.41.Special_26, 1980. a, b
Kayastha, R. B., Takeuchi, Y., Nakawo, M., and Ageta, Y.: Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor, IAHS-AISH P., 264, 7182, https://iahs.info/uploads/dms/11683.71-81-264-Kayastha.pdf (last access: 30 June 2025), 2000. a
Kellerer-Pirklbauer, A., Lieb, G. K., Avian, M., and Gspurning, J.: The response of partially debris-covered valley glaciers to climate change: the example of the Pasterze Glacier (Austria) in the period 1964 to 2006, Geogr. Ann. A, 90, 269–285, https://doi.org/10.1111/j.1468-0459.2008.00345.x, 2008. a
Kirkbride, M. P. and Deline, P.: The formation of supraglacial debris covers by primary dispersal from transverse englacial debris bands, Earth Surf. Proc. Land., 38, 1779–1792, https://doi.org/10.1002/esp.3416, 2013. a, b
Kirkbride, M. P. and Dugmore, A. J.: Glaciological response to distal tephra fallout from the 1947 eruption of Hekla, south Iceland, J. Glaciol., 49, 420–428, https://doi.org/10.3189/172756503781830575, 2003. a
Mihalcea, C., Mayer, C., Diolaiuti, G., Lambrecht, A., Smiraglia, C., and Tartari, G.: Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan, Ann. Glaciol., 43, 292–300, https://doi.org/10.3189/172756406781812104, 2006. a
Miles, E. S., Steiner, J., Buri, P., Immerzeel, W., and Pellicciotti, F.: Controls on the relative melt rates of debris-covered glacier surfaces, Environ. Res. Lett., 17, 064004, https://doi.org/10.1088/1748-9326/ac6966, 2022. a
Minora, U., Senese, A., Bocchiola, D., Soncini, A., D'Agata, C., Ambrosini, R., Mayer, C., Lambrecht, A., Vuillermoz, E., and Smiraglia, C.: A simple model to evaluate ice melt over the ablation area of glaciers in the Central Karakoram National Park, Pakistan, Ann. Glaciol., 56, 202–216, https://doi.org/10.3189/2015AoG70A206, 2015. a
Nakawo, M. and Takahashi, S.: A simplified model for estimating glacier ablation under a debris layer, IAHS-AISH P., 138, 137–145, 1982. a
Nicholson, L.: Modelling melt beneath supraglacial debris: implications for the climatic response of debris-covered glaciers, University of St. Andrews (United Kingdom), https://research-repository.st-andrews.ac.uk/handle/10023/10264 (last access: 30 June 2025), 2005. a
Nicholson, L., Wirbel, A., Mayer, C., and Lambrecht, A.: The challenge of non-stationary feedbacks in modeling the response of debris-covered glaciers to climate forcing, Front. Earth Sci., 9, 662695, https://doi.org/10.3389/feart.2021.662695, 2021. a
Østrem, G.: Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges, Geogr. Ann., 41, 228–230, https://doi.org/10.1080/20014422.1959.11907953, 1959. a
Quincey, D. J. and Glasser, N. F.: Morphological and ice-dynamical changes on the Tasman Glacier, New Zealand, 1990–2007, Global Planet. Change, 68, 185–197, https://doi.org/10.1016/j.gloplacha.2009.05.003, 2009. a
Reid, T. D. and Brock, B. W.: An energy-balance model for debris-covered glaciers including heat conduction through the debris layer, J. Glaciol., 56, 903–916, https://doi.org/10.3189/002214310794457218, 2010. a, b
Reznichenko, N., Davies, T., Shulmeister, J., and McSaveney, M.: Effects of debris on ice-surface melting rates: an experimental study, J. Glaciol., 56, 384–394, https://doi.org/10.3189/002214310792447725, 2010. a, b
Rounce, D. R., Hock, R., Maussion, F., Hugonnet, R., Kochtitzky, W., Huss, M., Berthier, E., Brinkerhoff, D., Compagno, L., Copland, L., Farinotti, D., Menounos, B., and McNabb, R. W.: Global glacier change in the 21st century: Every increase in temperature matters, Science, 379, 78–83, https://doi.org/10.1126/science.abo1324, 2023. a
Rowan, A. V., Nicholson, L. I., Quincey, D. J., Gibson, M. J., Irvine-Fynn, T. D., Watson, C. S., Wagnon, P., Rounce, D. R., Thompson, S. S., Porter, P. R., and Neil, F.: Seasonally stable temperature gradients through supraglacial debris in the Everest region of Nepal, Central Himalaya, J. Glaciol., 67, 170–181, https://doi.org/10.1017/jog.2020.100, 2021. a, b, c, d, e, f, g, h
Scherler, D., Wulf, H., and Gorelick, N.: Global assessment of supraglacial debris-cover extents, Geophys. Res. Lett., 45, 11798–11805, https://doi.org/10.1029/2018GL080158, 2018. a, b
Shugar, D. H. and Clague, J. J.: The sedimentology and geomorphology of rock avalanche deposits on glaciers, Sedimentology, 58, 1762–1783, https://doi.org/10.1111/j.1365-3091.2011.01238.x, 2011. a
Thakuri, S., Salerno, F., Smiraglia, C., Bolch, T., D'Agata, C., Viviano, G., and Tartari, G.: Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery, The Cryosphere, 8, 1297–1315, https://doi.org/10.5194/tc-8-1297-2014, 2014. a
Thomas, J. W.: Numerical partial differential equations: finite difference methods, Springer Science & Business Media, https://doi.org/10.1007/978-1-4899-7278-1, 2013. a
Tielidze, L. G., Bolch, T., Wheate, R. D., Kutuzov, S. S., Lavrentiev, I. I., and Zemp, M.: Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014, The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, 2020. a
Zhang, T. and Osterkamp, T.: Considerations in determining thermal diffusivity from temperature time series using finite difference methods, Cold Reg. Sci. Technol., 23, 333–341, https://doi.org/10.1016/0165-232X(94)00021-O, 1995. a
Short summary
A glacier's debris cover strongly modifies its mass balance in contrast to a clean-ice glacier. A key parameter for calculating sub-debris melt is the thermal diffusivity of the debris layer. Conway and Rasmussen (2000) present a method to estimate this value based on simple heat diffusion principles. Our analysis shows that the selected temporal and spatial sampling intervals affect the estimated value of thermal diffusivity, resulting in glacier melt being systematically underestimated.
A glacier's debris cover strongly modifies its mass balance in contrast to a clean-ice glacier....