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Abstract. A surface debris layer significantly modifies un-
derlying ice melt dependent on the thermal resistance of the
debris cover, with thermal resistance being a function of de-
bris thickness and effective thermal conductivity. Thus, these
terms are required in models of sub-debris ice melt. The most
commonly used method to calculate effective thermal con-
ductivity of supraglacial debris layers applies heat diffusion
principles to a vertical array of temperature measurements
through the supraglacial debris cover combined with an es-
timate of volumetric heat capacity of the debris as presented
by Conway and Rasmussen (2000). Application of this ap-
proach is only appropriate if the temperature data indicate
that the system is predominantly conductive and, even in the
case of a pure conductive system, the method necessarily in-
troduces numerical errors that can impact the derived values.
The sampling strategies used in published applications of this
method vary in sensor precision and spatiotemporal temper-
ature sampling strategies, hampering inter-site comparisons
of the derived values and their usage at unmeasured sites.
To address this, we use synthetic datasets to isolate the nu-
merical errors of the temporal and spatial sampling interval
and the precision of sensor temperature and position in re-
covering known thermal diffusivity values using this method.
On the basis of this, we can establish sampling an analytical
strategy to minimize the methodological errors. Our results
show that increasing temporal and spatial sampling intervals
increases (or leads to) truncation errors and systematically
underestimates calculated values of thermal diffusivity. The
thermistor precision, the shape of the diurnal temperature cy-
cle, the debris thermal diffusivity, and misrepresenting the
vertical thermistor position also result in systematic errors

that show strong cross-dependencies dependent on signal-
to-noise ratio with which spatiotemporal temperature gradi-
ents are captured. We provide an interactive analysis tool and
best-practice guidelines to help researchers investigate the ef-
fect of the sampling interval on calculated sub-debris ice melt
and plan future measurement campaigns. These findings can
be used to plan optimal field-sampling strategies for future
campaigns and as a guide for common reanalysis of existing
datasets to allow intercomparison across sites.

1 Introduction

Debris-covered glaciers can be found in tectonically active
mountain regions, such as Alaska, the European Alps, High-
mountain Asia, or New Zealand (Herreid and Pellicciotti,
2020), where large amounts of debris migrate into the ice
via glacial and periglacial processes (Shugar and Clague,
2011; Scherler et al., 2018; Anderson et al., 2018). Debris
falling onto the ablation zone contributes directly to any sur-
face debris load, while debris added to the glacier surface
in the accumulation zone or sourced subglacially is trans-
ported englacially to the ablation area of the glacier, where
it melts out and contributes additional debris load (Nichol-
son and Benn, 2006; Kirkbride and Deline, 2013; Anderson
et al., 2018), as shown in Fig. 1a. In comparison to clean ice,
thin or patchy debris amplifies ice melt due to its higher ab-
sorptivity of short-wave radiation, while thicker debris layers
reduce ice melt due to the insulation and attenuation of the
diurnal heating signal (Inoue and Yoshida, 1980; Kayastha
et al., 2000; Kirkbride and Dugmore, 2003; Mihalcea et al.,
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2006; Brock et al., 2010; Reznichenko et al., 2010; Fyffe
et al., 2014; Minora et al., 2015). The relationship between
debris thickness and ablation rate varies for different debris
layer compositions and prevailing climatological conditions
but retains the same character (Fig. 1b). The critical debris
thickness beyond which sub-debris ice ablation is inhibited
compared to clean-ice ablation ranges from 15 to 115 mm
(Østrem, 1959; Mattson, 1993; Nicholson and Benn, 2006)
depending on the optical and thermal properties of the debris
and the ambient climate (Inoue and Yoshida, 1980; Nakawo
and Takahashi, 1982; Adhikary et al., 1997; Reznichenko et
al., 2010). Therefore, in contrast to clean-ice glaciers, where
the melt increases towards the glacier tongue in response
to typical environmental temperature lapse rates, the spatial
pattern of melt of debris-covered glaciers depends more on
the debris thickness than on the elevation (e.g. Benn et al.,
2012; Rowan et al., 2021; Nicholson et al., 2021). Herreid
and Pellicciotti (2020) found that 7.3 %± 3.3 % of all moun-
tain glacier area is covered by a rock debris cover, which,
at a global scale, delays the loss of debris-covered glaciers
for the coming decades (Rounce et al., 2023). With contin-
ued glacier decline, debris-covered glacier surfaces are ex-
pected to increase in absolute and percentage terms in the
future (Deline and Orombelli, 2005; Kellerer-Pirklbauer et
al., 2008; Quincey and Glasser, 2009; Bhambri et al., 2011;
Bolch et al., 2012; Kirkbride and Deline, 2013; Thakuri et al.,
2014; Scherler et al., 2018; Tielidze et al., 2020), highlight-
ing the need for accurate modelling of sub-debris ice melt
to be included in future glacier projections (Rounce et al.,
2015).

Although, under certain circumstances, heat can be trans-
ferred through the debris by convection, advection, and ra-
diation, observations (e.g. Conway and Rasmussen, 2000;
Nicholson and Benn, 2012) show that the system often, and
especially under dry stable meteorological conditions, ap-
proximates Fourier’s law of conduction, q =−k∇T , where
q represents the local heat flux density, k represents the ther-
mal conductivity, and T represents the temperature (Fourier,
1955; Cannon, 1984). Consequently, in models of glacier ice
melt, the energy supply for ice melt beneath the debris cover
is typically treated as if it were heat conduction only (e.g.
Reid and Brock, 2010; Fyffe et al., 2014), driven by the sur-
face temperature, the debris thickness, and a value of debris
thermal conductivity to be supplied as a model parameter.
As a second consequence, Fourier’s law of conduction has
also been used to derive representative parameter values of
effective debris thermal conductivity for horizontally homo-
geneous debris layers from field observations of spatiotem-
poral variations in debris temperature. To do this, the one-
dimensional heat conduction equation for a homogeneous,
isotropic medium (Eq. 1) is used to derive the apparent ther-
mal diffusivity, κ , from the spatiotemporal variation in a ver-
tical profile of temperature measurements by finding the gra-
dient of the regression line between the first derivative of
temperature with time and the second derivative of temper-

Figure 1. (a) Schematic of a debris-covered glacier with debris
transport of subglacially sourced rock debris from the release area
to the meltout area. The inset shows a classical thermal diffusiv-
ity measurement site, consisting of thermistors at several heights
between the near surface and the debris–ice interface. (b) Measure-
ments of the so-called Østrem curves for different glaciers show
a common pattern of variation in daily melt rate versus the debris
depth, with site-specific variations in maximum ablation and the as-
sociated debris thickness. Redrawn from Mattson (1993).

ature with depth (Conway and Rasmussen, 2000). Effective
thermal conductivity k can then be calculated from κ and the
volumetric heat capacity of the debris, given by the specific
heat capacity cs and the material density ρ (Eq. 2), including
the porosity for a granular material.

∂T

∂t
= κ

∂2T

∂x2 + const., (1)

κ =
k

ρ · cs

← thermal conductivity
← heat capacity

(2)

Application of this method therefore requires (1) a vertical
array of temperature measurements through the supraglacial
debris cover (Fig. 1a) for conditions in which the debris heat
transfer closely approximates that of a conductive system
from which the apparent κ is derived and (2) an estimate of
the volumetric heat capacity of the debris used to convert the
apparent κ into effective conductivity.

To meet the first requirement, a sample site must be cho-
sen for which lateral heat transfer can reasonably be ex-
pected to be negligible, so a site that is horizontally homo-
geneous in factors such as slope, debris type, and thickness
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and without evidence of any hydrological heat transfer. Then,
the observed temperatures must be evaluated to find specific
time periods and vertical subsets of debris temperature pro-
file data that are identified as being “well-behaved” approx-
imations of a conductive system; data that show evidence
of non-conductive processes can be excluded from subse-
quent analysis (Conway and Rasmussen, 2000). To meet
the second requirement, estimates of the debris porosity and
the rock density thermal properties must be made. Com-
monly used values for these terms are porosity of 0.3, rock
density of 2700 kg m−3, and rock specific heat capacity of
750 Jkg−1 K−1, with a 10% error applied to the combined
terms (Conway and Rasmussen, 2000). Most studies assume
that the pore spaces are air-filled when calculating the volu-
metric heat capacity, but, in principle, if the debris cover is
known to be fully saturated, a water-filled case can be used
to obtain the volumetric heat capacity of the sampled de-
bris layer (Nicholson and Benn, 2006). In an ideal case, this
workflow can yield a reliable estimate of effective thermal
conductivity from a homogenous dry portion of the debris
with stable meteorological forcing conditions and minimal
non-conductive processes. Further use of these effective dry-
debris thermal conductivity data in surface energy balance
models can allow non-conductive processes and non-uniform
debris layers to be included in the model structure by, for ex-
ample, accounting for stratification in the debris porosity and
air flow through the debris (Evatt et al., 2015), stratification
of moisture content, and associated phase changes within the
debris layer (Collier et al., 2014; Evatt et al., 2015; Giese et
al., 2020).

As natural debris covers often show vertical variation in
porosity, grain size, and moisture content, recent studies have
explored multi-layered applications of the thermal diffusion
representation of the debris layer. Laha et al. (2022) per-
form multiple rather than single regression analysis to ac-
count for (i) unknown depth variation in κ in a two-layer
model and (ii) non-conductive heat sources/sinks. They ap-
ply various methods to synthetic datasets to highlight that
applying the original method of Conway and Rasmussen
(2000) produces large errors when trying to recover a target
κ that varies with depth and that unequally spaced temper-
ature measurements introduce substantial truncation errors.
If unequal spacing of measurements cannot be avoided, their
new Bayesian method of determining κ outperforms that of
Conway and Rasmussen (2000). Petersen et al. (2022) also
include a term for depth-varying κ into the heat conduction
equation and perform multiple linear regression to solve for
its variation with depth in natural debris cover, identifying
non-conductive processes as the residual from a comparison
of the observed and modelled time-dependent temperature
evolution. They find non-negligible heat transfer related to
air motion and latent heat fluxes within the debris on Kenni-
cott Glacier. These approaches offer solutions for the poten-
tial of vertically varying debris properties and allow quan-

tified assessment of non-conductive processes in measured
field sites.

Despite these new developments, the method of Conway
and Rasmussen (2000) has been historically widely used (e.g.
Nicholson and Benn, 2006; Haidong et al., 2006; Juen et
al., 2013; Chand and Kayastha, 2018; Rounce et al., 2015;
Rowan et al., 2021) and has provided the majority of pub-
lished debris thermal conductivity values used in generalized
surface energy balance models (Reid and Brock, 2010; Fyffe
et al., 2014; Evatt et al., 2015) and for regional intercom-
parisons of supraglacial debris properties (Fontrodona-Bach
et al., 2025). Thus, many studies of debris-covered glaciers
rely upon the robustness of debris thermal properties pro-
duced following Conway and Rasmussen (2000). The lim-
ited number of datasets used to provide generalized values
of effective thermal conductivity have deployed very differ-
ent field and analytical strategies, with temporal and spatial
sampling intervals, thermistor placement within the debris,
debris depth of the sampled site, and sensor precision all se-
lected ad hoc in different studies and differing from measure-
ment site to measurement site (e.g. Juen et al., 2013; Chand
and Kayastha, 2018; Rowan et al., 2021). For example, spa-
tiotemporal sampling intervals range from 2 cm to tens of
centimetres and from 5 min to 6 h, sometimes including time-
averaged rather than sampled temperatures (Appendix B).
The impact of these choices on the derived κ values is not
well addressed in the published literature, but, for example,
the same data from Imja Glacier in Nepal analysed at 30 min
(Rounce et al., 2015) and 60 min (Rowan et al., 2021) in-
tervals yielded thermal conductivity values that differed by
almost 40 % despite the same properties being used to de-
rive thermal conductivity from κ . This highlights that base-
line literature values that are used in surface energy balance
modelling may be differently influenced by sensor, installa-
tion, and numerical truncation errors and indicates that care
should be taken when comparing across sites for which dif-
ferent instrumental and analytical choices have been made
(e.g. Rowan et al., 2021; Miles et al., 2022). Therefore, a
deeper exploration of the error sources of this method is war-
ranted, and it would be advantageous to develop standardized
field and analytical implementation strategies.

2 Aim of this study

This study explores the effect of measurement setup on κ
values derived using the method of Conway and Rasmussen
(2000) in order to highlight the potential dependency of pub-
lished values of thermal conductivity on the spatiotemporal
intervals chosen for the analysis and on the sensor preci-
sion and locational accuracy. To achieve this, we apply the
method of Conway and Rasmussen (2000) to data generated
using a forward diffusivity model for a purely conductive
system with a specified value of κ and assess how closely the
known κ is recovered when varying choices of instrumen-
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tal and analytical setups. Since the approach recommended
by Conway and Rasmussen (2000) is only valid for conduc-
tive systems, we focus our study on a purely conductive sys-
tem to provide a baseline reference for individual method-
related error sources, expanding the analysis of the impact
of irregular spacings performed in Laha et al. (2022) to in-
clude an assessment of a wider range of field measurement
choices. By isolating the individual roles of these different
error sources, they can be quantified and their tendencies can
be understood, thereby making possible a more critical re-
assessment of the extent to which differences in published
effective thermal conductivity values reflect real-world dif-
ferences in debris properties or instrumental and analytical
choices. We provide an interactive tool (https://github.com/
calvinbeck/TC-DTD, last access: 30 June 2025) to allow
analysis of the combined errors for any given measurement
procedure and a best-practice guideline on how to minimize
the systematic errors of using this method (Appendix A).

3 Methods

3.1 Artificial data for benchmarking-derived thermal
diffusivity

To test the method of Conway and Rasmussen (2000) for dif-
ferent scenarios, we generate synthetic data for debris cover
thicknesses of 30 and 100 cm and κ values of 5× 10−7 and
10×10−7 m2 s−1 to represent a range of values obtained from
previous field studies from glaciers across the globe (Laha et
al., 2022). The interactive tool allows users to perform anal-
yses for any alternative choice of debris thickness and κ . To
generate data for a perfectly conductive system, we force the
heat equation with five 10 d (days) surface temperature time
series (Fig. 2) and a 0 °C boundary condition for the debris
ice interface. The first 2 d of temperature-forcing data is used
to initialize the model, and the different debris layer thick-
nesses are represented by varying the number of vertical grid
points in the domain while maintaining equidistant spacing.

We use the Crank and Nicolson (1947) method to solve
the heat conduction equation for this set of given constraints.
This implicit finite-difference method is convergent second-
order in time and numerically stable. The method is based
on the trapezoidal rule and is a combination of the Euler for-
ward and backward methods in time. For the thermal heat
equation, it results in the following equations:

T n+1
i − T ni

1t
=

κ

1x2

(
T n+1
i+1 − 2T n+1

i + T n+1
i−1

)
(forward Euler), (3)

T n+1
i − T ni

1t
=

κ

1x2

(
T ni+1− 2T ni + T

n
i−1

)
(backward Euler). (4)

Combining these results in the Crank–Nicolson scheme,

T n+1
i − T ni

1t
=

κ

21x2

((
T n+1
i+1 − 2T n+1

i + T n+1
i−1

)
+

(
T ni+1− 2T ni + T

n
i−1

))
. (5)

Because of the implicit nature of the Crank–Nicolson
scheme, an algebraic equation or linearizing the equation is
necessary to solve the next time step. In our case, we can
use the boundary conditions T (x = 0, t)= f (t) and T (x =
D,t)= 0, where f (t) represents the arbitrary temperature-
forcing function (Fig. 2). Although the method is uncondi-
tionally numerically stable for the heat equation (Thomas,
2013), unwanted spurious oscillations can occur if the time
steps are too long or the spatial resolution is too small. To
avoid this, we use the following stability criterion:

κ
dt

dx2 ≤
1
2
. (6)

Meeting this criterion (Eq. 6) for both tested values of κ
and all five forcing datasets (Fig. 2), the simulated tempera-
tures are produced at 5 min and 2 cm resolution with float-
point precision. The resulting generated data (e.g. Fig. 3)
provide an ideal reference from which temperatures can be
sampled in space and time to replicate field measurements
from “well-behaved” portions of vertical temperature pro-
files within supraglacial debris, meaning subsets of the data
that can be shown to closely approximate a conductive sys-
tem.

3.2 Experiments performed

We apply the Conway and Rasmussen (2000) method of de-
riving apparent κ for a selected range of analytical setups
as described in the following subsections. When calculating
κ from data resampled from the synthetic cases, we calcu-
late a single diffusivity value for the last 8 d of each forcing
dataset, although the interactive tool also offers the option to
calculate κ at a daily scale for assessment of field datasets.
The calculation of the centred spatial derivatives is suitable
for unequal grid spacing, but we do not include analysis of
unequal vertical thermistor spacings in this study as this was
presented in a previous study (Laha et al., 2022). The proper-
ties of the analytical setup that are varied are 1t , 1x, vary-
ing the precision of the temperature data, and adding Gaus-
sian noise to assess statistical uncertainty. The performance
of each experiment at recovering the known κ prescribed in
the artificial data is assessed by calculating the relative error:

relative error=
κtrue− κestimated

κtrue
. (7)

Positive relative error values thus correspond to an under-
estimation of κ compared to the known value. As effects of
individual potential sources of error are contingent on other
properties of the experimental setup, we present illustrative
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Figure 2. Characteristics of the surface temperature forcing for the artificial data generation, which consists of 10 d time series of two
analytical sine curves and three experimental temperature measurements within the debris layer. The sine curves have an average temperature
of 7.5 °C and the same amplitude. Surface forcing from field data is derived from the uppermost thermistor, which lies 1–5 cm below the
surface, as indicated in brackets. Field data 1 and 3 were recorded at Lirung Glacier (Nepal) during September 2013 (5 cm below surface) and
April 2014 (1 cm below surface) respectively and were provided by Chand and Kayastha (2018). Field data 2 was recorded at Vernagtferner
(Austria) during June 2010 (4 cm below surface) and was provided by Juen et al. (2013). The colour scheme of these forcings is used in
subsequent figures.

Figure 3. Some 5 d examples of the artificially generated debris
layer temperature time series data for the skewed sine forcing (a)
and the field data 3 forcing (b) for a 30 cm debris layer with κ of
5×10−7 m2 s−1 using the Crank–Nicolson scheme. (c, d) Daily av-
eraged debris layer temperature profile for the full 10 d time series
of the boundary conditions in the upper panels, showing that the
often-used steady-state assumption (Evatt et al., 2015) of the daily
mean debris layer temperature, shown by a linear temperature gra-
dient, is only fulfilled for periodic daily temperature forcings.

examples of the error tendencies and their co-dependencies
over a range of properties. The full potential parameter space
can be explored in the interactive tool. Firstly, the synthetic
data are resampled without any added sensor or installation
uncertainty to examine the behaviour of numerical trunca-

tion errors. Subsequently, the errors associated with the sen-
sor and installation uncertainty are presented.

3.2.1 Quantifying truncation errors in space and time

In theory, the numerical solution to the diffusion problem
should be equal to the analytical solution for infinitesimally
small spatial and temporal sampling intervals. Truncation er-
rors are expected to scale with the temporal and spatial incre-
ment of the analysis with respect to the diurnal forcing cycle
(Laha et al., 2022). Higher-order approximations would re-
duce the truncation error, but errors due to measurement un-
certainties would dominate, as described by Zhang and Os-
terkamp (1995).

lim
1t→0

Tt+1− Tt−1

21t
= Ṫ and

lim
1x→0

Tx+1− Tx + Tx−1

(1x)2
= T ′′ (8)

For 1x,1t = 0, the equations are not solvable.
For the temporal truncation error, we resample the artifi-

cial data both by skipping and by averaging over an increas-
ing 1t (Fig. 4) from 5 min (the native resolution of the ar-
tificial data) to 6 h intervals to encompass the highest- and
lowest-resolution temporal sampling of published field data
(Appendix B). When skipping, we select every nth value and
omit the rest. When averaging, we take the mean tempera-
ture over n values. While most studies store samples of the
thermistor data at fixed 1t , we include an assessment of this
averaging approach, as some published field data collection
campaigns are based on measurements of temperatures aver-
aged over1t (e.g. Rowan et al., 2021). For the spatial trunca-
tion error, we resample by skipping data points in space over
a range of intervals to decrease the resolution of the 2 cm res-
olution artificially produced data. For this analysis, we use
the highest-resolution temporal forcing with1t of 5 min and
calculate κ for the centre of the debris layer, expanding 1x
symmetrically around this point. For assessing truncation er-
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Figure 4. Illustrating the two different temporal resampling meth-
ods by displaying the temporal grid for different sampling intervals.
We compare the method by skipping every nth grid point (a, blue
background) or by averaging over n grid points (b, orange back-
ground).

rors due to both temporal and spatial resampling, the temper-
ature values are used with their float-point accuracy from the
generated data, which implies perfect sensor precision.

3.2.2 Quantifying sensor and installation errors

Thermistors used to record supraglacial debris temperature
profiles over time have varying manufacturer-stipulated sen-
sor precision, and there may be uncertainty around their ex-
act location in the debris cover, as this can be challenging to
measure with a high degree of accuracy in the field and it can
change if the debris moves.

To simulate the effect of temperature measurement preci-
sion, we discretize the temperature data to correspond with
the measurement precision of 0.1 to 0.4 °C, which is repre-
sentative of the precision of thermistors typically used in the
field. The error properties of these differing sensor precisions
are examined for a range of spatiotemporal resampling, in
which we ensure symmetrical resampling of 1x by resam-
pling from the centre of the debris layer outwards. Because
the observed temperature changes and gradients are smaller
at depth, it is expected that a higher precision of temperature
measurement is required to capture them. Therefore we also
examine how the relative error due to sensor precision varies
with the depth in the debris layer at which the analysis is
performed. For this, we also consider the potential gain from
even higher-precision sensors by including a 0.01 °C temper-
ature discretization, although this is more precise than any of
the thermistor properties reported in the literature.

To simulate cases where either the vertical location of
the temperature measurement is inaccurate or the thermistor
is displaced vertically over time, we use the sampled tem-
peratures at float precision and add a time-invariant vertical
offset to each temperature measurement position. Each off-

set value is randomly sampled from a Gaussian distribution
with a standard deviation of 0.5 cm around the true vertical
measurement position to represent an inaccurate field mea-
surement of the vertical position. If thermistors move within
the debris due to settling or debris migration, the positional
inaccuracy could even be larger, but this would likely be
discernible from evidence of debris movement or identified
when the thermistors were removed from the debris layer,
allowing affected data to be excluded from further analy-
sis. For both analyses of the effects of sensor precision and
location accuracy, we present only the idealized sinusoidal-
forcing data to best isolate the systematic error patterns and
how they co-vary with the truncation errors established by
the first analysis steps (Sect. 3.2.1).

3.3 Statistical uncertainty estimation

The method of Conway and Rasmussen (2000) is only valid
in well-behaved conductive systems; therefore the aim is to
only apply the method to a time period and vertical section
where this assumption is largely fulfilled. Therefore, our er-
ror analysis so far assumes the debris to be a purely conduc-
tive, vertically and horizontally homogeneous system, while,
in nature, the debris cover will not be perfectly homoge-
neous and some non-conductive processes are expected to
contribute to temperature data even in “well-behaved” sec-
tions.

To show that the model-related error sources studied re-
main relevant despite additional external error sources, we
add random statistical noise to the data time series that we
perform our analysis on. For this, we use the pure sine curve
forcing for a 100 cm thick debris layer, with 1x of 2 cm and
1t of 5 min resolution for a κ of 5× 10−7 m2 s−1. Subse-
quently, each individual float precision temperature value of
the generated temperature time series is modified by a value
randomly sampled from a Gaussian distribution with a mean
value of 0 °C and a standard deviation of 0.1 °C. This pro-
cedure is repeated 20 times to generate a small ensemble of
individually perturbed temperature time series. The introduc-
tion of this statistical noise of σT = 0.1 °C does not account
for any specific physical processes, since non-conductive
processes and effects due to spatial inhomogeneity would
produce systematic temperature shifts on a multi-hourly to
seasonal timescale, as observed in some field datasets (Con-
way and Rasmussen, 2000; Nicholson and Benn, 2012; Pe-
tersen et al., 2022). The σT = 0.1 °C is rather selected to sta-
tistically perturb the model system and simulate the effect
of additional errors. By increasing or decreasing the selected
σT value, the effect of the perturbation is respectively ampli-
fied or attenuated, but the general impact remains the same.
The data are analysed as in the previous sections by vary-
ing the temporal sampling interval and the vertical position
in the debris layer for three selected vertical grid spacings
1x (4, 8, 16 cm) to capture the co-dependencies of the error
properties with these measurement choices. The temporal re-
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sampling is performed by skipping to preserve the maximum
temperature perturbations to illustrate the effects of a maxi-
mum perturbation. When resampling by averaging, the per-
turbed values would equal out for longer temporal averaging
periods. For each parameter combination, the mean of κ is
calculated from the ensemble with a respective standard de-
viation to display the value spread.

4 Results

While the interactive tool provided allows a full range of
sampling strategies to be explored, here we present results
for selected cases within the range of realistic instrumen-
tal setups. Our focus is to provide illustrative examples that
characterize the error properties of each individual source.

4.1 Error due to temporal truncation

We illustrate the behaviour of the temporal truncation er-
ror calculated for a 100 cm thick debris layer with κ of
5×10−7 m2 s−1 for up to 6 h sampling intervals for both skip-
ping and averaging resampling methods. As few field studies
use 1x as small as our 2 cm resolution artificial data, we
show an example with 1x of 6 cm to better represent field
observations. We show the behaviour at two depths within
the debris layer to illustrate the depth dependency of the er-
ror behaviour.

The relative error in κ due to temporal truncation error
shows a general pattern of monotonic increase with increas-
ing 1t for the skipping method (Fig. 5a and b). Consistently
positive relative errors indicate that increasing the temporal
sampling interval systematically underestimates κ . At shal-
low depths, the less sinusoidal the temperature forcing is, the
larger the error at all sampling intervals (illustrated by the
8 cm depth cases shown in Fig. 5a and c). At great depths,
the error for the sinusoidal forcing remains similar to that in
the near surface, while the noisy surface diurnal signals are
smoothed at depth and the associated error tends to be more
similar to that of the sinusoidal surface forcing (illustrated
by the 50 cm depth cases shown in Fig. 5b and d). When data
are resampled by averaging, the temporal truncation error is
very similar for the sine curve, but, for the noisy-field-forcing
data, averaging reduces the error compared to the skipping
resampling method (Fig. 5c and d). These patterns of error
behaviour are also seen for κ of 10× 10−7 m2 s−1.

Considering the maximum relative error produced by typ-
ical field installations, we can take the case of calculating
diffusivity at a point as close to the surface as is reasonably
possible at 4 cm, requiring a thermistor spacing of 2 cm com-
bined with the longer typical time sampling interval of 1 h
and calculating over a period with noisy surface forcing. This
combination yields a maximum temporal truncation relative
error of 25%. To minimize the error from a truncation per-
spective, a minimum temporal resolution is desirable, and se-

Figure 5. Relative temporal truncation error of recovering κ us-
ing different temporal sampling intervals: comparison of different
temperature forcings for skipping (a, b: blue boundary) and averag-
ing (c, d: orange boundary) resampling methods for two different
depths in the 1.0 m debris layer with a target κ of 5×10−7 m2 s−1.

lecting days with surface temperature forcing that is closer to
sinusoidal will decrease errors that may otherwise be signif-
icant at shallow depths.

4.2 Error due to spatial truncation

We illustrate the behaviour of the spatial truncation error
calculated for a 100 cm thick debris layer with κ of 5 and
10× 10−7 m2 s−1, for 1x up to 50 cm, using a sample of the
five surface-forcing datasets at 1t of 5 min.

Spatial truncation error values (Fig. 6) remain quasi-
constant for low 1x, up to when the centred differenc-
ing scheme spans more than 20 cm, and thereafter increase
rapidly with increasing 1x. The spatial truncation error is
relatively insensitive to the different surface temperature
forcings and, in contrast to the temporal truncation error,
does not vary markedly with debris depth. Instead, the κ im-
poses a strong influence, with higher κ having smaller er-
rors, shifting the respective curves to the right as shown for
the case of the sinusoidal forcing in Fig. 6. Given that the
diffusivity is the target of sensor installations, this parameter
cannot be known in advance, and the results suggest that 1x
of below 14 cm is desirable to minimize spatial truncation er-
rors across a range of potential κ . The consistently positive
error values mean that the spatial source of truncation error
also has the tendency to systematically underestimate κ , in-
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Figure 6. Comparison of the spatial truncation error for two differ-
ent κ values and forcing types, calculated for the central position
in a 1.0 m debris layer for symmetrically increasing 1x. For clar-
ity, we show only one curve for the higher diffusivity value, as all
curves are shifted similarly when varying the target κ . The forcing
datasets are at float precision with 1t of 5 min.

creasingly so with more widely spaced temperature measure-
ments.

4.3 Error due to thermistor precision

To illustrate the role of temperature sensor precision, we
firstly focus on the range of sensor spacings that are not
affected by the spatial truncation error, i.e. for 1x up to
14 cm (Fig. 7), and show the relative error for a 1t rang-
ing from 5 min to several hours. The error due to temperature
discretization is generally less pronounced for smaller tem-
perature discretizations, representing greater thermistor pre-
cision. Maximum errors occur for small values of 1x, de-
creasing to stable relative errors of < 25 % for 1x > 6 cm,
above which the error also decreases systematically with de-
creasing temporal sampling interval. Values of 1x between
the dominant spatial truncation error (Sect. 4.2) and the error
due to the sensor precision are desirable, so between ca. 6
and 14 cm for the representative parameter space explored in
our analyses.

The depth dependency of the error associated with dis-
cretization indicates the importance of high-precision sen-
sors for sampling the debris at depth (Fig. 8). For a 1x of
2 cm, only measurements with a maximum thermistor un-
certainty of 0.01 °C would produce correct values and then
only for the first 20 cm of debris. Increasing 1x to 6 cm, the
relative error decreases for all curves. Still, the thermistors
used in most field experiments, which have reported preci-
sion ranging from 0.1 to 0.4 °C, would not produce correct
values at depth. For the case shown, it would become dif-
ficult to obtain reliable values at depths beyond 60 cm even
with high-precision thermistors. The error behaviour is de-

pendent on capturing temperature gradients sufficiently well,
so the specific error limits are dependent on the amplitude of
the surface-forcing fluctuations and diffusivity and the cho-
sen discretization and spatiotemporal sampling. For a given
discretization, meaningful values can be obtained at greater
depth by enlarging the 1x, but higher-precision sensors are
always an advantage. As for both types of truncation error,
the sensor precision error systematically underestimates the
target κ .

4.4 Error due to vertical thermistor position
inaccuracy

Conway and Rasmussen (2000) report that a vertical error
of 0.5 cm would result in a marginal temperature difference
of 0.1 and 0.02 °C for their measurement setups. They and
others (e.g. Nicholson and Benn, 2012) interpret this to mean
that a vertical thermistor displacement would not affect the
results as long as this value does not change in time.

Our analysis, however, shows that low-accuracy knowl-
edge of the temperature measurement location could produce
a systematic error for smaller 1x. For example, in the rela-
tively rare case that sensors are installed with a 1x of 2 cm,
the resultant error on calculated values of effective thermal
diffusivity is so large that the data would become unusable.
With increasing 1x, the relative error decreases, such that
the mean κ over the depth of the layer recovers the target
value. This error source is the only one in this study that has
the potential to increase κ values, as shown in Fig. 9 by the
spread of κ above the known reference value.

4.5 Statistical uncertainty estimation

In contrast to the noise-free case shown in Fig. 5, with the
addition of statistical noise, the relative temporal truncation
error now increases with depth, and the predominance of
relative errors < 25% in the sub-hourly 1t range can now
only be recovered in the near-surface portion of the debris
layer (Fig. 10). The standard deviation of the error curves
nearer the surface is less than a few percent of the relative
error, therefore showing a minimal ensemble spread, while,
at depth, the ensemble spread is larger. From this, we can see
that, where the random noise introduced is large compared
to the spatiotemporal temperature gradients, as is the case at
greater depths in the debris layer, the method is essentially no
longer applicable. Increasing the 1x decreases the relative
error found at depth but has little impact on the smaller errors
nearer the surface. At larger1x, even the near-surface values
now have a non-zero relative error for short 1t ; this is due
to the spatial truncation error of the vertical sampling inter-
val as displayed in Fig. 6 coming into play, while, at greater
depth in the debris, the larger1x decreases the relative error,
although this still remains > 0.6 with a large relative error
and standard deviation values of∼ 10%. In our example, the
combination with the most precise recovery of the target κ ,
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Figure 7. Relative error of estimated κ due to thermistor temperature discretization of 0.1 and 0.4°C for vertical sampling intervals up to
0.14 m and1t resampled by skipping (a, b) and averaging (c, d) for the intervals shown in the legend, such that the 5 min dataset is identical
for both methods. The case presented is a centred sampling of a 0.3 m thick layer with target κ of 5× 10−7 m2 s−1 forced with a sinusoidal
surface forcing.

with relative error approaching zero, was for 1x = 8 cm at
an 18 cm depth and at a 5 min temporal sampling interval.
For this combination, the relative error due to temporal trun-
cation error increases to∼ 10% and∼ 20% at1t of 120 and
240 min respectively.

Displaying the noise-induced relative error of κ more ex-
plicitly in relation to the depth in the debris over the span of
the shared calculation range (0.18–0.82 cm) highlights that
there are characteristic transition zones between where the
method is still applicable and where it is not, and, as these
scale with the relative magnitude of the noise, the transi-
tion location is dependent on the 1x used in the analysis
(Fig. 11), along with the amplitude of the surface forcing,
the diffusivity, and the temperature discretization. For exam-
ple, for the uppermost section of the artificial debris layer,
all curves with 5 and 60 min sampling intervals provide rel-
ative errors below 10%, while, in the data combination we
show, the transition to relative error > 20% for these sam-
pling intervals is 0.3, 0.45, and 0.65 m depth for vertical
grid spacings of 4, 8, and 16 cm respectively. Therefore, as is
the case for the depth dependence of temperature discretiza-
tion (Fig. 8), increasing the 1x increases the depth at which

meaningful values can be recovered when noise is present.
However, increasing the grid spacing also results in a 1x
truncation error, which is visible in Fig. 11c as a vertical dis-
placement in relative error values additional to the displace-
ment caused by the temporal truncation error.

5 Discussion

In previously published data, most apparent thermal diffu-
sivity derived using the method of Conway and Rasmussen
(2000) are below 10×10−7 m2 s−1, typically ranging from 1
to 30, with some outlier values exceeding 100×10−7 m2 s−1

(see Table 2 in Laha et al., 2022). The implementation errors
that our analysis reveals are often comparable to this range of
published values, highlighting how relevant it is to correctly
consider the numerical errors in choosing how to apply this
method.

While the interactive tool accompanying our analysis al-
lows a wider range of the parameter space to be explored, the
cases we present were chosen to characterize the main nu-
merical error sources inherent in the method within the pa-
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Figure 8. Relative error of estimated κ due to thermistor discretiza-
tion by depth for a 1.0 m debris layer, with 5 min sinusoidal surface
forcing for1x of (a) 2 cm and (b) 6 cm, with the different coloured
lines corresponding to different values of temperature discretiza-
tion.

rameter space of published values (Appendix B). The numer-
ical and measurement implementation error sources investi-
gated here all tend to systematically underestimate κ , while
the relative error associated with uneven thermistor spacing
(tested for a three-thermistor case by Laha et al., 2022) was
previously identified to systematically overestimate κ by up
to 50% at thermistor spacing ratios of 1 : 5.

In general, the numerical errors associated with apply-
ing this method are all related to how well the temperature
gradients in space and time within the debris cover can be
captured by the instrumental setup. Temporal truncation er-
rors in the absence of statistical noise are typically < 25%
in most expected deployment settings at sampling intervals
of ≤ 60 min. Near-surface measurements suffer more error
because the diurnal temperature cycle at the surface is the
most non-sinusoidal and therefore produces larger temporal
truncation errors. Consequently, conditions that more closely
approximate sinusoidal conditions (i.e. clear-sky stable at-
mospheric conditions) reduce the errors in the near-surface
layers, but this becomes less relevant at depth, as surface

Figure 9. Illustrating the influence of thermistor displacement on
estimated κ by randomly displacing locations by a normal distri-
bution with a standard deviation of 0.5 cm over a range of vertical
spacing intervals. The true/target thermal diffusivity is shown by the
horizontal black line, showing that, for small temperature sampling
intervals, sensor displacement results in large inaccuracies in κ .

noise introduced by weather is progressively smoothed out
at greater depth in the debris. Spatial truncation due to the
choice of thermistor spacing is not very sensitive to the non-
sinusoidal forcing but becomes≥ 25% at1x above∼ 25 cm
for the range of κ reported in the literature, and the error is
larger for smaller κ . The 1x range at which errors are small
and similar regardless of the forcing and κ is ≤ 14 cm, pro-
viding a conservative upper bound to limit spatial truncation
errors. Even though a 1t or 1x→ 0 would produce a min-
imal truncation error, sampling intervals that are too small
can also produce erroneous results because, for a 1t→ 0,
the linear regression coefficient of determination decreases
strongly. In practice, this is not a problem for the temporal
sampling, since short temporal sampling intervals can always
be resampled afterwards. A more significant problem occurs
if low-precision thermistors are positioned too close to each
other, especially if the profile comprises only a few thermis-
tors, making it impossible to spatially resample the temper-
ature data. While this effect diminishes to a stable value of
relative error ≥ 25% for 1x above ∼ 6 cm, with increasing
depth, the thermistors must be further apart, otherwise the
thermistor measurement uncertainty dominates the measure-
ment. Therefore, although the highest-precision thermistors
should always be chosen if possible, using thermistors with
maximum precision becomes even more important at greater
depths in the debris layer. The only error source investigated
here that has the potential to overestimate κ is that due to in-
accurate temperature measurement location. This can happen
due to poorly measured positions or due to debris settling af-
ter sensor installation if the thermistor profiles are installed
on a slope, which is subject to gradual gravitational sliding
or reworking. In contrast to Conway and Rasmussen (2000),
who showed that a constant error in the thermistor position
was not important to the analysis, we find that, at least for
very small 1x, the calculated κ does depend on the thermis-
tor positions relative to each other being correctly known and
sustained over the measurement period. However, thermis-
tors are typically placed more a than a few centimetres apart;
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this error source might be expected to have little effect if the
κ is calculated at several levels in the debris cover, as the
mean value of the location-perturbed cases recovers the tar-
get diffusivity. Introducing a statistical noise term highlights
the manner in which noise degrades the temperature gradi-
ents that the method relies on, particularly at greater depths
in the debris, where temperature variations in space and time
are small compared to the introduced noise term. Thus, care
must also be taken to assess if the method is being applied
to portions of the debris layer where the gradients are well
captured.

In the best-practice guidelines (Appendix A), we address
all sources of methodological error discussed in this paper,
suggesting optimal implementation strategies for future field
studies that wish to deploy these methods of analysing rep-
resentative thermal conductivity of natural debris layers fol-
lowing the method of Conway and Rasmussen (2000). Our
recommendations differ somewhat from those of Laha et al.
(2022), as the purpose is different. While Laha et al. (2022)
sought to determine the optimal method to determine sub-
debris ablation rates directly from temperature sensors using
a minimal number of thermistors, we seek to understand the
best way to determine a representative κ from which effec-
tive thermal conductivity suitable for onward use in general-
ized surface energy balance models can be derived. For their
purpose, they propose to “set the sensor spacing to be one-
fifth of the debris thickness at the location”; however, the
non-linear nature of the single-error sources presented in this
paper indicates that we cannot generalize such statements if
the goal is parameter determination rather than direct abla-
tion determination. Furthermore, they stated “the top sensor
should be placed approximately at the middle of the debris
layer”, as this captures the relevant flux being delivered to
the underlying ice. Our analysis indicates that, while it is
true that thermistors too close to the surface produce large
truncation errors, the same is valid for thermistors that are
too deep, as the temperature gradient is too small relative to
the thermistor precision. By providing an open-source inter-
active tool that can be used to explore all the methodolog-
ical sources of error in implementing the most widely used
method of determining κ , we offer a ready-to-use means for
determining the field setup that minimizes these numerical
methodological errors. The intention is that, prior to a new
field deployment, the error response of the expected condi-
tions of debris thickness, surface-forcing amplitude, sensor
number, and precision can be explored and the best possible
field deployment of sensors can be made.

In addition to the errors related to measurement setup and
analysis procedure investigated in this study, non-conductive
processes within the debris layer (e.g. rain, phase changes)
can also be present (Conway and Rasmussen, 2000; Nichol-
son and Benn, 2012; Petersen et al., 2022). Unfortunately, it
is not always clear in the published literature that the ther-
mal diffusivities and associated thermal conductivity values
were derived from optimal conditions sampled within the

dataset. The suitability of the sampled debris temperature
profiles for determining debris thermal parameters must be
carefully evaluated on a case-by-case basis, using meteoro-
logical data and closely evaluating the measurements and
their gradient functions (Petersen et al., 2022) in order to es-
tablish that the data subset represents predominantly conduc-
tive conditions, before applying the method of Conway and
Rasmussen (2000). Once a suitable effective thermal con-
ductivity is established based on “well-behaved” conditions,
these base values can be modified for implementation within
a surface energy balance model to account for changes in the
pore fluid type to allow simulation of varying wet-/dry-debris
conditions (Collier et al., 2014; Giese et al., 2020).

The recently published database of supraglacial debris
properties, DebDab v1 (Fontrodona-Bach et al., 2025), re-
veals that, from the 176 values of debris thermal conductiv-
ity, only 33 report an associated uncertainty, and, while 121
include the debris layer thickness, only 23 report on details
such as the thermistor depth. To facilitate the intercompari-
son of these data, it would be valuable to include the temporal
sampling used, along with the rock properties and porosity
used to convert κ to thermal conductivity. Deeper consider-
ation and potential common reanalyses of these data would
require the original thermistor data to be publicly available,
which is not always the case. Reanalysing previously pub-
lished vertical temperature profiles with common resampling
strategies, based on the findings of this study, would facili-
tate intercomparison of κ values, while reanalysis using the
methods of Petersen et al. (2022) and/or Laha et al. (2022)
might yield more robust and representative global values by
providing respectively a more rigorous assessment of non-
conductive processes and inclusion of multi-layered thermal
properties within the natural debris layers that have been
sampled.

6 Conclusion

Conway and Rasmussen (2000) provide a practical method
to estimate thermal diffusivity values from a vertical array of
thermistors in the supraglacial debris layer, which is applica-
ble for spatially homogenous debris and behaves as a close
approximation to a purely conductive system. Although this
method has become the standard method for determining ef-
fective thermal conductivity to be used in surface energy bal-
ance models of sub-debris ice ablation (e.g. Nicholson and
Benn, 2006, 2012; Juen et al., 2013; Rounce et al., 2015;
Chand and Kayastha, 2018; Rowan et al., 2021), our analysis
demonstrates several ways in which the derived κ is sensitive
to numerical errors related to instrumental setup and analysis
choices, even when solving for a pure-conduction case. The
method has regularly been used without considering these er-
ror sources, making it difficult to robustly compare published
values derived using this method.
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Figure 10. Relative errors of thermal diffusivity of statistically perturbed ensemble data for a 1.0 m debris layer varied by temporal sampling
interval for three different depths in the debris layer and three different1x values (4, 8, 16 cm). The ensemble consists of 20 cases, with each
individual temperature value being perturbed by a Gaussian distribution with a standard deviation of σT = 0.1 °C. The solid line is the mean
relative error value, and the shaded background represents the standard deviation of the relative error.

Figure 11. Relative errors of thermal diffusivity of statistically perturbed ensemble data for a 1.0 m debris layer varied by the depth in the
debris layer for three different sampling intervals and vertical grid spaces of 1x (4, 8, 16 cm). The ensemble consists of 20 individual runs
of each 8 d, with each individual temperature value being perturbed by a Gaussian distribution with a standard deviation of σT = 0.1 °C. The
solid line is the mean relative error value, and the shadowed background represents the standard deviation of the relative error.

To address this, we provide an open-source tool (https://
github.com/calvinbeck/TC-DTD, last access: 30 June 2025)
where researchers can investigate the combined opportunities
and limitations of applying the method by Conway and Ras-
mussen (2000) to glaciology and beyond. We hope this fa-
cilitates more consistent and rigorous experimental design in
future field measurements determining debris thermal prop-
erties by allowing users to simulate their own artificial data,
which most closely approximate their planned field site, and
repeat all our analyses presented here with their own artificial
or field datasets.

In this paper, we used this tool to provide illustrative ex-
amples of the magnitude and tendencies of the systematic
errors associated with individual instrumental and analyti-
cal choices. Based upon our findings, we provide a set of
best-practice guidelines (Appendix A) to minimize system-
atic errors in applying the method of Conway and Rasmussen

(2000). While recent publications highlight limitations of the
simplest deployment of the heat diffusion equation in natural
debris layers due to the role of non-conductive processes and
internal debris stratification (Laha et al., 2022; Petersen et
al., 2022), our analysis and best-practice guidelines show the
sampling strategies that will yield the best results, provided
that the temperatures underpinning the analyses demonstra-
bly sample conditions that closely approximate a homoge-
neous conductive system. Our analysis also highlights that it
is challenging to interpret derived debris thermal properties
if the sensor and the analysis system are not reported and
accounted for. In the light of this, we encourage more rigor-
ous reporting of implementation strategies and uncertainty in
order to facilitate cross-comparison of reported results.
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Appendix A: Best-practice guidelines

Our analysis leads us to the following best-practice guide-
lines to help other researchers to get as much as possible out
of their measurements.

Thermistor precision

Use a temperature sensor with the highest possible precision,
but not exceeding 0.1 K.

Debris layer thickness

To determine a representative thermal diffusivity from which
robust, generally applicable thermal conductivity values can
be derived, sampling a minimum of 40 cm but ideally deeper
(e.g. 100 cm) debris thickness is advised. The maximum
depth that can be meaningfully sampled is limited by the
thermistor precision and temperature gradients in the debris
layer, which can be simulated beforehand using the tool pro-
vided.

Number of thermistors

The method requires at least three thermistors, but more ther-
mistors make it possible to calculate diffusivity values for
different depths and therefore make it possible to identify
non-conductive processes or other inconsistencies within the
debris layer. With only three temperature sensors, it is diffi-
cult to assess if the sampled debris meets the requirement of
closely approximating a conductive system. A second redun-
dant set of thermistors can also be helpful to rule out mea-
surement errors.

Thermistor installation

A site should be chosen that is not expected to be subject
to gravitational reworking or sliding of the debris and where
lateral heat fluxes are expected to be minimal. Thermistors
should be placed at equal vertical intervals of 8 to 20 cm.
Even though the uppermost layer often does not produce
ideal results, it can be helpful to place a thermistor at or near
the debris surface to provide surface-forcing data. Depend-
ing on the depth, the thermal diffusivity, and the temperature
gradient of the debris layer, the method produces more sig-
nificant errors with a greater depth, limiting the depth where
it makes sense to place thermistors. The sweet spot can be
determined by simulating the debris layer of interest before-
hand with model parameters from previous measurements or
other estimations.

Thermistor recovery

Thermistors have to be carefully extracted and their vertical
positions have to be carefully recorded at the end of the mea-
surement period to make sure that they have not moved in

the debris while being deployed. In cases where the thermis-
tors have moved, it might be necessary to discard the dataset.
Therefore, mounting thermistors to a thermally insulated rod
or set of rods so that their positions are fixed is a valuable
approach to eliminate this potential error source.

Temporal sampling interval

One should sample with a temporal resolution as short as
possible and then average over a 5 min period. Over such a
short period, the temperature is assumed to be nearly con-
stant and therefore not to reduce gradients. By averaging the
temperature over a short interval, discretization is reduced.

Measurement duration and conditions

The measurement duration and conditions depend on the sci-
entific objective and seasonality, but at least 1 week of suit-
able stable meteorological conditions is needed. Therefore, if
one has unlucky conditions, a measurement duration of sev-
eral months could be necessary. A shorter period of predomi-
nantly sinusoidal surface temperature forcing, with evidence
that non-conductive processes are minimal, is the best way
to obtain robust values, so avoiding periods of precipitation,
seasonal change, and phase change is advised.
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Appendix B: Field measurement overview

Table B1. Overview table of thermal diffusivity field measurement sites. DT: debris layer thickness; SR: sampling rate; AC: thermistor
accuracy; TM: number of thermistors. Data from Nicholson (2005), Nicholson and Benn (2012), Juen et al. (2013), Rounce et al. (2015),
Chand and Kayastha (2018), and Rowan et al. (2021).

Site Glacier Year DT SR AC TM Thermistor Start Days
ID (m) (min) (°C) (#) (m) date (#)

KH1a Khumbu 2014 2.8 30 ±0.4 8 0.1, 0.25, 0.4, 0.55, 0.7, 0.8, 0.9, 1.0 2014-05-10 188
KH1b Khumbu 2015 2.8 30 ±0.4 8 0.1, 0.25, 0.4, 0.55, 0.7, 0.8, 0.9, 1.0 2014-11-21 328
KH2a Khumbu 2014 0.7 30 ±0.4 8 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 2014-05-13 184
KH2b Khumbu 2015 0.8 30 ±0.4 9 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 2015-10-20 338
KH4 Khumbu 2014 0.3 30 ±0.4 4 0.02, 0.11, 0.22, 0.3 2014-05-20 180
KH5 Khumbu 2015 0.7 30 ±0.4 8 0.0, 0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 2015-10-20 205
CN1 Changri Nup 2016 0.1 30 ±0.1 3 0.01, 0.05, 0.1 2015-11-28 450
CN2 Changri Nup 2016 0.08 30 ±0.1 2 0.01, 0.08 2015-11-28 450
CNW1 Changri N. (W.) 2010 0.1 30 ±0.1 4 0.025, 0.05, 0.075, 0.1 2010-10-31 698
CNW2 Changri N. (W.) 2012 0.125 30 ±0.1 4 0.05, 0.075, 0.1, 0.125 2012-12-05 723
CNW3a Changri N. (W.) 2014 0.21 30 ±0.1 3 0.01, 0.16, 0.21 2014-11-30 309
CNW3b Changri N. (W.) 2015 0.26 30 ±0.1 3 0.02, 0.2, 0.26 2015-11-27 33
CNW3c Changri N. (W.) 2017 0.1 30 ±0.1 3 0.01, 0.05, 0.1 2017-11-26 347
CNW3d Changri N. (W.) 2018 0.14 30 ±0.1 3 0.02, 0.1, 0.14 2018-11-11 379
NG1 Ngozumpa 2002 2.2 30 ±0.1 6 0.0, 0.22, 0.33, 0.45, 0.65, 0.77 2001-11-13 323
NG2 Ngozumpa 2015 2.0 360 ±0.25 11 0.01, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2 2014-12-06 484
IM4 Imja-Lhotse S. 2014 1.6 30 ±0.3 5 0.0, 0.1, 0.2, 0.4, 0.83 2014-05-31 162
IM11 Imja-Lhotse S. 2014 0.45 30 ±0.3 5 0.0, 0.05, 0.1, 0.2, 0.36 2014-05-31 162
IM13 Imja-Lhotse S. 2014 0.33 30 ±0.3 4 0.0, 0.05, 0.1, 0.2 2014-05-31 162
IM14 Imja-Lhotse S. 2014 0.26 30 ±0.3 3 0.0, 0.05, 0.24 2014-05-31 162
ILS1 Imja-Lhotse S. 2013 0.3 30 ±0.3 6 0.0, 0.05, 0.1, 0.15, 0.2, 0.3 2013-09-14 11
ILS2 Imja-Lhotse S. 2013 0.47 30 ±0.3 7 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.47 2013-09-14 11
ILS3 Imja-Lhotse S. 2013 0.36 30 ±0.3 6 0.0, 0.05, 0.1, 0.15, 0.2, 0.36 2013-09-14 11
ILS4 Imja-Lhotse S. 2013 0.4 30 ±0.3 7 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4 2013-09-14 11
LG1a Lirung 2013 0.38 5 ±0.1 3 0.1, 0.2, 0.3 2013-09-24 9
LG1b Lirung 2013 0.4 5 ±0.1 3 0.01, 0.1, 0.4 2013-12-05 7
LG1c Lirung 2014 0.4 5 ±0.1 3 0.01, 0.1, 0.4 2014-04-06 13
LG2a Lirung 2013 0.42 5 ±0.1 3 0.05, 0.15, 0.35 2013-09-20 13
LG2b Lirung 2013 0.4 5 ±0.1 3 0.01, 0.1, 0.4 2013-12-05 7
LG2c Lirung 2014 0.4 5 ±0.1 3 0.01, 0.1, 0.4 2014-04-07 12
SDF1 Suldenferner 2014 0.6 30 ±0.3 3 0.0, 0.02, 0.06 2014-07-30 54
SDF2 Suldenferner 2014 0.12 60 ±0.3 5 0.0, 0.03, 0.06, 0.09, 0.12 2014-09-26 319
SDF3 Suldenferner 2014 0.24 60 ±0.3 6 0.04, 0.08, 0.12, 0.16, 0.20, 0.24 2014-09-26 319
SDF4 Suldenferner 2014 1 60 ±0.3 6 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 2016-09-25 278
BG Belvedere 2003 0.27 15 ±0.3 4 0.04, 0.11, 0.23, 0.27 2003-06-24 42
LB_dry Larsbreen 2002 0.65 10 ±0.4 8 0.0, 0.09, 0.19, 0.29, 0.38, 0.53, 0.61, 0.75 2002-07-21 5
LB_exp Larsbreen 2002 0.65 10 ±0.4 5 0.1, 0.2, 0.3, 0.4, 0.5 2002-07-09 12
LB_sat Larsbreen 2002 0.65 10 ±0.4 8 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.35, 0.4 2002-07-03 6
VF1 Vernagtferner 2010 0.08 5 ±0.35 3 0.04, 0.06, 0.08 2010-06-24 83
VF2 Vernagtferner 2010 0.18 5 ±0.35 3 0.07, 0.11, 0.15 2010-06-24 82
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