Articles | Volume 19, issue 3
https://doi.org/10.5194/tc-19-1013-2025
https://doi.org/10.5194/tc-19-1013-2025
Research article
 | 
06 Mar 2025
Research article |  | 06 Mar 2025

Spatiotemporal patterns of accumulation and surface roughness in interior Greenland with a GNSS-IR network

Derek J. Pickell, Robert L. Hawley, and Adam LeWinter

Related authors

ICESat-2 surface elevation assessment with kinematic GPS and static GNSS near the ice divide in Greenland
Derek J. Pickell, Robert L. Hawley, Denis Felikson, and Jamie C. Good
The Cryosphere, 20, 483–494, https://doi.org/10.5194/tc-20-483-2026,https://doi.org/10.5194/tc-20-483-2026, 2026
Short summary

Cited articles

Albert, M. R. and Hawley, R. L.: Seasonal changes in snow surface roughness characteristics at Summit, Greenland: Implications for snow and firn ventilation, Ann. Glaciol., 35, 510–514, https://doi.org/10.3189/172756402781816591, 2002. a, b, c
Bolzan, J. F. and Strobel, M.: Accumulation-rate variations around Summit, Greenland, J. Glaciol., 40, 56–66, https://doi.org/10.3189/S0022143000003798, 1994. a
Bourlier, C., Pinel, N., and Fabbro, V.: Illuminated height PDF of a random rough surface and its impact on the forward propagation above oceans at grazing angles, in: 2006 First European Conference on Antennas and Propagation, Nice, France, 6–10 November 2006, 1–6, https://doi.org/10.1109/EUCAP.2006.4584894, 2006. a
Castellani, B. B., Shupe, M. D., Hudak, D. R., and Sheppard, B. E.: The annual cycle of snowfall at Summit, Greenland, J. Geophys. Res.-Atmos., 120, 6654–6668, https://doi.org/10.1002/2015JD023072, 2015. a, b, c, d, e, f
Dahl-Jensen, T. S., Citterio, M., Jakobsen, J., Ahlstrøm, A. P., Larson, K. M., and Khan, S. A.: Snow depth measurements by GNSS-IR at an automatic weather station, NUK-K, Remote Sens., 14, 2563, https://doi.org/10.3390/rs14112563, 2022. a, b
Download
Short summary
We use a low-cost, low-power GNSS network to measure surface accumulation in Greenland's interior using the interferometric reflectometry technique. Additionally, we extend this method to also estimate centimeter- to meter-scale surface roughness. Our results closely align with a validation record and highlight a period of unusually high accumulation from late 2022 to 2023, along with seasonal variations in surface roughness.

Share