Articles | Volume 19, issue 3
https://doi.org/10.5194/tc-19-1013-2025
https://doi.org/10.5194/tc-19-1013-2025
Research article
 | 
06 Mar 2025
Research article |  | 06 Mar 2025

Spatiotemporal patterns of accumulation and surface roughness in interior Greenland with a GNSS-IR network

Derek J. Pickell, Robert L. Hawley, and Adam LeWinter

Related authors

A low-cost, autonomous system for distributed snow depth measurements on sea ice
Ian A. Raphael, Donald K. Perovich, Christopher M. Polashenski, and Robert L. Hawley
EGUsphere, https://doi.org/10.5194/egusphere-2025-187,https://doi.org/10.5194/egusphere-2025-187, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Impacts of differing melt regimes on satellite radar waveforms and elevation retrievals
Alexander C. Ronan, Robert L. Hawley, and Jonathan W. Chipman
The Cryosphere, 18, 5673–5683, https://doi.org/10.5194/tc-18-5673-2024,https://doi.org/10.5194/tc-18-5673-2024, 2024
Short summary
A cold laboratory hyperspectral imaging system to map grain size and ice layer distributions in firn cores
Ian E. McDowell, Kaitlin M. Keegan, S. McKenzie Skiles, Christopher P. Donahue, Erich C. Osterberg, Robert L. Hawley, and Hans-Peter Marshall
The Cryosphere, 18, 1925–1946, https://doi.org/10.5194/tc-18-1925-2024,https://doi.org/10.5194/tc-18-1925-2024, 2024
Short summary
New proglacial meteorology and river stage observations from Inglefield Land and Pituffik, NW Greenland
Sarah E. Esenther, Laurence C. Smith, Adam LeWinter, Lincoln H. Pitcher, Brandon T. Overstreet, Aaron Kehl, Cuyler Onclin, Seth Goldstein, and Jonathan C. Ryan
Geosci. Instrum. Method. Data Syst., 12, 215–230, https://doi.org/10.5194/gi-12-215-2023,https://doi.org/10.5194/gi-12-215-2023, 2023
Short summary
Divergence of apparent and intrinsic snow albedo over a season at a sub-alpine site with implications for remote sensing
Edward H. Bair, Jeff Dozier, Charles Stern, Adam LeWinter, Karl Rittger, Alexandria Savagian, Timbo Stillinger, and Robert E. Davis
The Cryosphere, 16, 1765–1778, https://doi.org/10.5194/tc-16-1765-2022,https://doi.org/10.5194/tc-16-1765-2022, 2022
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Sheets
The influence of firn layer material properties on surface crevasse propagation in glaciers and ice shelves
Theo Clayton, Ravindra Duddu, Tim Hageman, and Emilio Martínez-Pañeda
The Cryosphere, 18, 5573–5593, https://doi.org/10.5194/tc-18-5573-2024,https://doi.org/10.5194/tc-18-5573-2024, 2024
Short summary
Probabilistic projections of the Amery Ice Shelf catchment, Antarctica, under conditions of high ice-shelf basal melt
Sanket Jantre, Matthew J. Hoffman, Nathan M. Urban, Trevor Hillebrand, Mauro Perego, Stephen Price, and John D. Jakeman
The Cryosphere, 18, 5207–5238, https://doi.org/10.5194/tc-18-5207-2024,https://doi.org/10.5194/tc-18-5207-2024, 2024
Short summary
Reconstructing dynamics of the Baltic Ice Stream Complex during deglaciation of the Last Scandinavian Ice Sheet
Izabela Szuman, Jakub Z. Kalita, Christiaan R. Diemont, Stephen J. Livingstone, Chris D. Clark, and Martin Margold
The Cryosphere, 18, 2407–2428, https://doi.org/10.5194/tc-18-2407-2024,https://doi.org/10.5194/tc-18-2407-2024, 2024
Short summary
Assessing the potential for ice flow piracy between the Totten and Vanderford glaciers, East Antarctica
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023,https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Stagnant ice and age modelling in the Dome C region, Antarctica
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023,https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary

Cited articles

Albert, M. R. and Hawley, R. L.: Seasonal changes in snow surface roughness characteristics at Summit, Greenland: Implications for snow and firn ventilation, Ann. Glaciol., 35, 510–514, https://doi.org/10.3189/172756402781816591, 2002. a, b, c
Bolzan, J. F. and Strobel, M.: Accumulation-rate variations around Summit, Greenland, J. Glaciol., 40, 56–66, https://doi.org/10.3189/S0022143000003798, 1994. a
Bourlier, C., Pinel, N., and Fabbro, V.: Illuminated height PDF of a random rough surface and its impact on the forward propagation above oceans at grazing angles, in: 2006 First European Conference on Antennas and Propagation, Nice, France, 6–10 November 2006, 1–6, https://doi.org/10.1109/EUCAP.2006.4584894, 2006. a
Castellani, B. B., Shupe, M. D., Hudak, D. R., and Sheppard, B. E.: The annual cycle of snowfall at Summit, Greenland, J. Geophys. Res.-Atmos., 120, 6654–6668, https://doi.org/10.1002/2015JD023072, 2015. a, b, c, d, e, f
Dahl-Jensen, T. S., Citterio, M., Jakobsen, J., Ahlstrøm, A. P., Larson, K. M., and Khan, S. A.: Snow depth measurements by GNSS-IR at an automatic weather station, NUK-K, Remote Sens., 14, 2563, https://doi.org/10.3390/rs14112563, 2022. a, b
Download
Short summary
We use a low-cost, low-power GNSS network to measure surface accumulation in Greenland's interior using the interferometric reflectometry technique. Additionally, we extend this method to also estimate centimeter- to meter-scale surface roughness. Our results closely align with a validation record and highlight a period of unusually high accumulation from late 2022 to 2023, along with seasonal variations in surface roughness.

Share