Articles | Volume 18, issue 2
https://doi.org/10.5194/tc-18-819-2024
https://doi.org/10.5194/tc-18-819-2024
Research article
 | 
20 Feb 2024
Research article |  | 20 Feb 2024

Partial melting in polycrystalline ice: pathways identified in 3D neutron tomographic images

Christopher J. L. Wilson, Mark Peternell, Filomena Salvemini, Vladimir Luzin, Frieder Enzmann, Olga Moravcova, and Nicholas J. R. Hunter

Related authors

The temperature change shortcut: effects of mid-experiment temperature changes on the deformation of polycrystalline ice
Lisa Craw, Adam Treverrow, Sheng Fan, Mark Peternell, Sue Cook, Felicity McCormack, and Jason Roberts
The Cryosphere, 15, 2235–2250, https://doi.org/10.5194/tc-15-2235-2021,https://doi.org/10.5194/tc-15-2235-2021, 2021
Short summary
Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining computer X-ray microtomography and focussed ion beam scanning electron microscopy imaging
Arne Jacob, Markus Peltz, Sina Hale, Frieder Enzmann, Olga Moravcova, Laurence N. Warr, Georg Grathoff, Philipp Blum, and Michael Kersten
Solid Earth, 12, 1–14, https://doi.org/10.5194/se-12-1-2021,https://doi.org/10.5194/se-12-1-2021, 2021
Short summary
CobWeb 1.0: machine learning toolbox for tomographic imaging
Swarup Chauhan, Kathleen Sell, Wolfram Rühaak, Thorsten Wille, and Ingo Sass
Geosci. Model Dev., 13, 315–334, https://doi.org/10.5194/gmd-13-315-2020,https://doi.org/10.5194/gmd-13-315-2020, 2020
Short summary
On the path to the digital rock physics of gas hydrate-bearing sediments – processing of in situ synchrotron-tomography data
Kathleen Sell, Erik H. Saenger, Andrzej Falenty, Marwen Chaouachi, David Haberthür, Frieder Enzmann, Werner F. Kuhs, and Michael Kersten
Solid Earth, 7, 1243–1258, https://doi.org/10.5194/se-7-1243-2016,https://doi.org/10.5194/se-7-1243-2016, 2016
Porosity and permeability determination of organic-rich Posidonia shales based on 3-D analyses by FIB-SEM microscopy
Georg H. Grathoff, Markus Peltz, Frieder Enzmann, and Stephan Kaufhold
Solid Earth, 7, 1145–1156, https://doi.org/10.5194/se-7-1145-2016,https://doi.org/10.5194/se-7-1145-2016, 2016
Short summary

Related subject area

Discipline: Ice sheets | Subject: Glacier Hydrology
Evaluation of satellite methods for estimating supraglacial lake depth in southwest Greenland
Laura Melling, Amber Leeson, Malcolm McMillan, Jennifer Maddalena, Jade Bowling, Emily Glen, Louise Sandberg Sørensen, Mai Winstrup, and Rasmus Lørup Arildsen
The Cryosphere, 18, 543–558, https://doi.org/10.5194/tc-18-543-2024,https://doi.org/10.5194/tc-18-543-2024, 2024
Short summary
Observed and modeled moulin heads in the Pâkitsoq region of Greenland suggest subglacial channel network effects
Celia Trunz, Kristin Poinar, Lauren C. Andrews, Matthew D. Covington, Jessica Mejia, Jason Gulley, and Victoria Siegel
The Cryosphere, 17, 5075–5094, https://doi.org/10.5194/tc-17-5075-2023,https://doi.org/10.5194/tc-17-5075-2023, 2023
Short summary
Deep Clustering in Radar Subglacial Reflector Reveals New Subglacial Lakes
Sheng Dong, Lei Fu, Xueyuan Tang, Zefeng Li, and Xiaofei Chen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-62,https://doi.org/10.5194/tc-2023-62, 2023
Revised manuscript accepted for TC
Short summary
In situ measurements of meltwater flow through snow and firn in the accumulation zone of the SW Greenland Ice Sheet
Nicole Clerx, Horst Machguth, Andrew Tedstone, Nicolas Jullien, Nander Wever, Rolf Weingartner, and Ole Roessler
The Cryosphere, 16, 4379–4401, https://doi.org/10.5194/tc-16-4379-2022,https://doi.org/10.5194/tc-16-4379-2022, 2022
Short summary
Controls on Greenland moulin geometry and evolution from the Moulin Shape model
Lauren C. Andrews, Kristin Poinar, and Celia Trunz
The Cryosphere, 16, 2421–2448, https://doi.org/10.5194/tc-16-2421-2022,https://doi.org/10.5194/tc-16-2421-2022, 2022
Short summary

Cited articles

Adams C. J. C., Iverson, N. R., Helanow, C., Zoet, L. K., and Bate, C. E.: Softening of temperate ice by interstitial water, Front. Earth Sci., 9, 702761, https://doi.org/10.3389/feart.2021.702761, 2021. 
Alley, R. B., Dupont, T. K., Parizek, B. R., and Anandakrishnan, S.: Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights, Ann. Glaciol., 40, 8–14, https://doi.org/10.3189/172756405781813483, 1988. 
Andrew, M.: Comparing organic-hosted and intergranular pore networks: topography and topology in grains, gaps and bubbles, J. Geol. Soc. Lond. Spec. Pub., 484, 241–253, https://doi.org/10.1144/SP484.4, 2020. 
Barnes, P., Tabor, D., and Walker, J. C. F.: The Friction and Creep of Polycrystalline Ice, Proc. Roy. Soc. Lond., A324, 127–155, https://doi.org/10.1098/rspa.1971.0132, 1971. 
Bell, R. E., Studinger, M., Shuman, C. A., Fahnestock, M. A., and Joughin, I.: Deformation, warming and softening of Greenland's ice by refreezing meltwater, Nat. Geosci., 445, 904–907, https://doi.org/10.1038/nature05554, 2007. 
Download
Short summary
As the temperature increases within a deforming ice aggregate, composed of deuterium (D2O) ice and water (H2O) ice, a set of meltwater segregations are produced. These are composed of H2O and HDO and are located in conjugate shear bands and in compaction bands which accommodate the deformation and weaken the ice aggregate. This has major implications for the passage of meltwater in ice sheets and the formation of the layering recognized in glaciers.