Articles | Volume 18, issue 9
https://doi.org/10.5194/tc-18-4029-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-4029-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Scientific history, sampling approach, and physical characterization of the Camp Century subglacial material, a rare archive from beneath the Greenland Ice Sheet
Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, VT 05401, USA
Gund Institute for Environment, University of Vermont, Burlington, VT 05401, USA
Andrew J. Christ
Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, VT 05401, USA
currently at: U.S. Reinsurance Analytics, Aon plc, Denver, CO 80206, USA
Catherine M. Collins
Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, VT 05401, USA
Gund Institute for Environment, University of Vermont, Burlington, VT 05401, USA
Halley M. Mastro
Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, VT 05401, USA
Gund Institute for Environment, University of Vermont, Burlington, VT 05401, USA
Juliana Souza
Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, VT 05401, USA
Gund Institute for Environment, University of Vermont, Burlington, VT 05401, USA
Pierre-Henri Blard
Centre de Recherches Pétrographiques et Géochimiques, CNRS, Université de Lorraine, 54500 Nancy, France
Laboratoire de Glaciologie, Université Libre de Bruxelles, 1050 Brussels, Belgium
Stefanie Brachfeld
Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA
Zoe R. Courville
U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory, Hanover, NH 03755, USA
Tammy M. Rittenour
Department of Geosciences, Utah State University, Logan, UT 84322, USA
Elizabeth K. Thomas
Department of Geology, University at Buffalo, Buffalo, NY 14260, USA
Jean-Louis Tison
Laboratoire de Glaciologie, Université Libre de Bruxelles, 1050 Brussels, Belgium
François Fripiat
Laboratoire de Glaciologie, Université Libre de Bruxelles, 1050 Brussels, Belgium
Related authors
Catherine M. Collins, Nicolas Perdrial, Pierre-Henri Blard, Nynke Keulen, William C. Mahaney, Halley Mastro, Juliana Souza, Donna M. Rizzo, Yves Marrocchi, Paul C. Knutz, and Paul R. Bierman
Clim. Past, 21, 1359–1381, https://doi.org/10.5194/cp-21-1359-2025, https://doi.org/10.5194/cp-21-1359-2025, 2025
Short summary
Short summary
The Camp Century subglacial core stores information about past climates and glacial and interglacial processes in northwestern Greenland. In this study, we investigated the core archive, making large-scale observations using computed tomography (CT) scans and micron-scale observations observing physical and chemical characteristics of individual grains. We find evidence of past ice-free conditions, weathering processes during warmer periods, and past glaciations.
Christopher T. Halsted, Paul R. Bierman, Alexandru T. Codilean, Lee B. Corbett, and Marc W. Caffee
Geochronology, 7, 213–228, https://doi.org/10.5194/gchron-7-213-2025, https://doi.org/10.5194/gchron-7-213-2025, 2025
Short summary
Short summary
Sediment generation on hillslopes and transport through river networks are complex processes that influence landscape evolution. In this study, we compiled sand from 766 river basins and measured its subtle radioactivity to unravel timelines of sediment routing around the world. With these data, we empirically confirm that sediment from large lowland basins in tectonically stable regions typically experiences long periods of burial, while sediment moves rapidly through small upland basins.
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024, https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Short summary
Cosmogenic nuclides, such as 10Be, are rare isotopes produced in rocks when exposed at Earth's surface and are valuable for understanding surface processes and landscape evolution. However, 10Be is usually measured in quartz minerals. Here we present advances in efficiently extracting and measuring 10Be in the pyroxene mineral. These measurements expand the use of 10Be as a dating tool for new rock types and provide opportunities to understand landscape processes in areas that lack quartz.
Peyton M. Cavnar, Paul R. Bierman, Jeremy D. Shakun, Lee B. Corbett, Danielle LeBlanc, Gillian L. Galford, and Marc Caffee
EGUsphere, https://doi.org/10.5194/egusphere-2024-2233, https://doi.org/10.5194/egusphere-2024-2233, 2024
Short summary
Short summary
To investigate the Laurentide Ice Sheet’s erosivity before and during the Last Glacial Maximum, we sampled sand deposited by ice in eastern Canada before final deglaciation. We also sampled modern river sand. The 26Al and 10Be measured in glacial deposited sediments suggests that ice remained during some Pleistocene warm periods and was an inefficient eroder. Similar concentrations of 26Al and 10Be in modern sand suggests that most modern river sediment is sourced from glacial deposits.
Eric W. Portenga, David J. Ullman, Lee B. Corbett, Paul R. Bierman, and Marc W. Caffee
Geochronology, 5, 413–431, https://doi.org/10.5194/gchron-5-413-2023, https://doi.org/10.5194/gchron-5-413-2023, 2023
Short summary
Short summary
New exposure ages of glacial erratics on moraines on Isle Royale – the largest island in North America's Lake Superior – show that the Laurentide Ice Sheet did not retreat from the island nor the south shores of Lake Superior until the early Holocene, which is later than previously thought. These new ages unify regional ice retreat histories from the mainland, the Lake Superior lake-bottom stratigraphy, underwater moraines, and meltwater drainage pathways through the Laurentian Great Lakes.
Adrian M. Bender, Richard O. Lease, Lee B. Corbett, Paul R. Bierman, Marc W. Caffee, James V. Jones, and Doug Kreiner
Earth Surf. Dynam., 10, 1041–1053, https://doi.org/10.5194/esurf-10-1041-2022, https://doi.org/10.5194/esurf-10-1041-2022, 2022
Short summary
Short summary
To understand landscape evolution in the mineral resource-rich Yukon River basin (Alaska and Canada), we mapped and cosmogenic isotope-dated river terraces along the Charley River. Results imply widespread Yukon River incision that drove increased Bering Sea sedimentation and carbon sequestration during global climate changes 2.6 and 1 million years ago. Such erosion may have fed back to late Cenozoic climate change by reducing atmospheric carbon as observed in many records worldwide.
Marie Bergelin, Jaakko Putkonen, Greg Balco, Daniel Morgan, Lee B. Corbett, and Paul R. Bierman
The Cryosphere, 16, 2793–2817, https://doi.org/10.5194/tc-16-2793-2022, https://doi.org/10.5194/tc-16-2793-2022, 2022
Short summary
Short summary
Glacier ice contains information on past climate and can help us understand how the world changes through time. We have found and sampled a buried ice mass in Antarctica that is much older than most ice on Earth and difficult to date. Therefore, we developed a new dating application which showed the ice to be 3 million years old. Our new dating solution will potentially help to date other ancient ice masses since such old glacial ice could yield data on past environmental conditions on Earth.
Mae Kate Campbell, Paul R. Bierman, Amanda H. Schmidt, Rita Sibello Hernández, Alejandro García-Moya, Lee B. Corbett, Alan J. Hidy, Héctor Cartas Águila, Aniel Guillén Arruebarrena, Greg Balco, David Dethier, and Marc Caffee
Geochronology, 4, 435–453, https://doi.org/10.5194/gchron-4-435-2022, https://doi.org/10.5194/gchron-4-435-2022, 2022
Short summary
Short summary
We used cosmogenic radionuclides in detrital river sediment to measure erosion rates of watersheds in central Cuba; erosion rates are lower than rock dissolution rates in lowland watersheds. Data from two different cosmogenic nuclides suggest that some basins may have a mixed layer deeper than is typically modeled and could have experienced significant burial after or during exposure. We conclude that significant mass loss may occur at depth through chemical weathering processes.
Leah A. VanLandingham, Eric W. Portenga, Edward C. Lefroy, Amanda H. Schmidt, Paul R. Bierman, and Alan J. Hidy
Geochronology, 4, 153–176, https://doi.org/10.5194/gchron-4-153-2022, https://doi.org/10.5194/gchron-4-153-2022, 2022
Short summary
Short summary
This study presents erosion rates of the George River and seven of its tributaries in northeast Tasmania, Australia. These erosion rates are the first measures of landscape change over millennial timescales for Tasmania. We demonstrate that erosion is closely linked to a topographic rainfall gradient across George River. Our findings may be useful for efforts to restore ecological health to Georges Bay by determining a pre-disturbance level of erosion and sediment delivery to this estuary.
Andrew J. Christ, Paul R. Bierman, Jennifer L. Lamp, Joerg M. Schaefer, and Gisela Winckler
Geochronology, 3, 505–523, https://doi.org/10.5194/gchron-3-505-2021, https://doi.org/10.5194/gchron-3-505-2021, 2021
Short summary
Short summary
Cosmogenic nuclide surface exposure dating is commonly used to constrain the timing of past glacier extents. However, Antarctic exposure age datasets are often scattered and difficult to interpret. We compile new and existing exposure ages of a glacial deposit with independently known age constraints and identify surface processes that increase or reduce the likelihood of exposure age scatter. Then we present new data for a previously unmapped and undated older deposit from the same region.
Melisa A. Diaz, Lee B. Corbett, Paul R. Bierman, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Earth Surf. Dynam., 9, 1363–1380, https://doi.org/10.5194/esurf-9-1363-2021, https://doi.org/10.5194/esurf-9-1363-2021, 2021
Short summary
Short summary
We collected soil surface samples and depth profiles every 5 cm (up to 30 cm) from 11 ice-free areas along the Shackleton Glacier, a major outlet glacier of the East Antarctic Ice Sheet (EAIS), and measured meteoric beryllium-10 and nitrate concentrations to understand the relationship between salts and beryllium-10. This relationship can help inform wetting history, landscape disturbance, and exposure duration.
Greg Balco, Benjamin D. DeJong, John C. Ridge, Paul R. Bierman, and Dylan H. Rood
Geochronology, 3, 1–33, https://doi.org/10.5194/gchron-3-1-2021, https://doi.org/10.5194/gchron-3-1-2021, 2021
Short summary
Short summary
The North American Varve Chronology (NAVC) is a sequence of 5659 annual sedimentary layers that were deposited in proglacial lakes adjacent to the retreating Laurentide Ice Sheet ca. 12 500–18 200 years ago. We attempt to synchronize this record with Greenland ice core and other climate records that cover the same time period by detecting variations in global fallout of atmospherically produced beryllium-10 in NAVC sediments.
Kurt R. Lindberg, Elizabeth K. Thomas, Martha K. Raynolds, Helga Bültmann, and Jonathan H. Raberg
EGUsphere, https://doi.org/10.5194/egusphere-2025-3849, https://doi.org/10.5194/egusphere-2025-3849, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Plant waxes are an important tool for inferring past changes in vegetation and the water cycle. However, the mechanisms governing the production of plant waxes and their stable isotopes are not well understood in Arctic plants. We found that terrestrial Arctic plant waxes are not significantly influenced by environmental parameters including temperature, precipitation, humidity, and elevation. These findings agree with our understanding of plant wax production in other regions of the world.
Catherine M. Collins, Nicolas Perdrial, Pierre-Henri Blard, Nynke Keulen, William C. Mahaney, Halley Mastro, Juliana Souza, Donna M. Rizzo, Yves Marrocchi, Paul C. Knutz, and Paul R. Bierman
Clim. Past, 21, 1359–1381, https://doi.org/10.5194/cp-21-1359-2025, https://doi.org/10.5194/cp-21-1359-2025, 2025
Short summary
Short summary
The Camp Century subglacial core stores information about past climates and glacial and interglacial processes in northwestern Greenland. In this study, we investigated the core archive, making large-scale observations using computed tomography (CT) scans and micron-scale observations observing physical and chemical characteristics of individual grains. We find evidence of past ice-free conditions, weathering processes during warmer periods, and past glaciations.
Sudip Acharya, Allison A. Cluett, Amy L. Grogan, Jason P. Briner, Isla S. Castañeda, and Elizabeth K. Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2025-3113, https://doi.org/10.5194/egusphere-2025-3113, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
The study analyzed temperature-sensitive bacterial membrane lipids in Holocene Lake sediments from southwestern Greenland. Temperature maxima in five lakes occurred between 7000–5000 years ago, at a coastal site between 5000–3000 years ago, and at an inland site, far from the coast and the Greenland Ice Sheet, between 9000–7000 years ago. Local temperature variations, influenced by the ice sheet and ocean, likely caused discrepancies in the temperature time series.
Christopher T. Halsted, Paul R. Bierman, Alexandru T. Codilean, Lee B. Corbett, and Marc W. Caffee
Geochronology, 7, 213–228, https://doi.org/10.5194/gchron-7-213-2025, https://doi.org/10.5194/gchron-7-213-2025, 2025
Short summary
Short summary
Sediment generation on hillslopes and transport through river networks are complex processes that influence landscape evolution. In this study, we compiled sand from 766 river basins and measured its subtle radioactivity to unravel timelines of sediment routing around the world. With these data, we empirically confirm that sediment from large lowland basins in tectonically stable regions typically experiences long periods of burial, while sediment moves rapidly through small upland basins.
Matias Romero, Shanti B. Penprase, Maximillian S. Van Wyk de Vries, Andrew D. Wickert, Andrew G. Jones, Shaun A. Marcott, Jorge A. Strelin, Mateo A. Martini, Tammy M. Rittenour, Guido Brignone, Mark D. Shapley, Emi Ito, Kelly R. MacGregor, and Marc W. Caffee
Clim. Past, 20, 1861–1883, https://doi.org/10.5194/cp-20-1861-2024, https://doi.org/10.5194/cp-20-1861-2024, 2024
Short summary
Short summary
Investigating past glaciated regions is crucial for understanding how ice sheets responded to climate forcings and how they might respond in the future. We use two independent dating techniques to document the timing and extent of the Lago Argentino glacier lobe, a former lobe of the Patagonian Ice Sheet, during the late Quaternary. Our findings highlight feedbacks in the Earth’s system responsible for modulating glacier growth in the Southern Hemisphere prior to the global Last Glacial Maximum.
Marie Bergelin, Greg Balco, Lee B. Corbett, and Paul R. Bierman
Geochronology, 6, 491–502, https://doi.org/10.5194/gchron-6-491-2024, https://doi.org/10.5194/gchron-6-491-2024, 2024
Short summary
Short summary
Cosmogenic nuclides, such as 10Be, are rare isotopes produced in rocks when exposed at Earth's surface and are valuable for understanding surface processes and landscape evolution. However, 10Be is usually measured in quartz minerals. Here we present advances in efficiently extracting and measuring 10Be in the pyroxene mineral. These measurements expand the use of 10Be as a dating tool for new rock types and provide opportunities to understand landscape processes in areas that lack quartz.
Peyton M. Cavnar, Paul R. Bierman, Jeremy D. Shakun, Lee B. Corbett, Danielle LeBlanc, Gillian L. Galford, and Marc Caffee
EGUsphere, https://doi.org/10.5194/egusphere-2024-2233, https://doi.org/10.5194/egusphere-2024-2233, 2024
Short summary
Short summary
To investigate the Laurentide Ice Sheet’s erosivity before and during the Last Glacial Maximum, we sampled sand deposited by ice in eastern Canada before final deglaciation. We also sampled modern river sand. The 26Al and 10Be measured in glacial deposited sediments suggests that ice remained during some Pleistocene warm periods and was an inefficient eroder. Similar concentrations of 26Al and 10Be in modern sand suggests that most modern river sediment is sourced from glacial deposits.
Karlee K. Prince, Jason P. Briner, Caleb K. Walcott, Brooke M. Chase, Andrew L. Kozlowski, Tammy M. Rittenour, and Erica P. Yang
Geochronology, 6, 409–427, https://doi.org/10.5194/gchron-6-409-2024, https://doi.org/10.5194/gchron-6-409-2024, 2024
Short summary
Short summary
We fill a spatial data gap in the ice sheet retreat history of the Laurentide Ice Sheet after the Last Glacial Maximum and investigate a hypothesis that the ice sheet re-advanced into western New York, USA, at ~13 ka. With radiocarbon and optically stimulated luminescence (OSL) dating, we find that ice began retreating from its maximum extent after 20 ka, but glacial ice persisted in glacial landforms until ~15–14 ka when they finally stabilized. We find no evidence of a re-advance at ~13 ka.
Pedro Doll, Shaun Robert Eaves, Ben Matthew Kennedy, Pierre-Henri Blard, Alexander Robert Lee Nichols, Graham Sloan Leonard, Dougal Bruce Townsend, Jim William Cole, Chris Edward Conway, Sacha Baldwin, Gabriel Fénisse, Laurent Zimmermann, and Bouchaïb Tibari
Geochronology, 6, 365–395, https://doi.org/10.5194/gchron-6-365-2024, https://doi.org/10.5194/gchron-6-365-2024, 2024
Short summary
Short summary
In this study, we use cosmogenic-sourced 3He to determine the eruption ages of 23 lava flows at Mt Ruapehu, Aotearoa New Zealand, and we show how this method can help overcome challenges associated with traditional dating methods in young lavas. Comparison with other methods demonstrates the accuracy of our data and the method's reliability. The new eruption ages allowed us to identify periods of quasi-simultaneous activity from different volcanic vents during the last 20 000 years.
Sarah Wauthy, Jean-Louis Tison, Mana Inoue, Saïda El Amri, Sainan Sun, François Fripiat, Philippe Claeys, and Frank Pattyn
Earth Syst. Sci. Data, 16, 35–58, https://doi.org/10.5194/essd-16-35-2024, https://doi.org/10.5194/essd-16-35-2024, 2024
Short summary
Short summary
The datasets presented are the density, water isotopes, ions, and conductivity measurements, as well as age models and surface mass balance (SMB) from the top 120 m of two ice cores drilled on adjacent ice rises in Dronning Maud Land, dating from the late 18th century. They offer many development possibilities for the interpretation of paleo-profiles and for addressing the mechanisms behind the spatial and temporal variability of SMB and proxies observed at the regional scale in East Antarctica.
Eric W. Portenga, David J. Ullman, Lee B. Corbett, Paul R. Bierman, and Marc W. Caffee
Geochronology, 5, 413–431, https://doi.org/10.5194/gchron-5-413-2023, https://doi.org/10.5194/gchron-5-413-2023, 2023
Short summary
Short summary
New exposure ages of glacial erratics on moraines on Isle Royale – the largest island in North America's Lake Superior – show that the Laurentide Ice Sheet did not retreat from the island nor the south shores of Lake Superior until the early Holocene, which is later than previously thought. These new ages unify regional ice retreat histories from the mainland, the Lake Superior lake-bottom stratigraphy, underwater moraines, and meltwater drainage pathways through the Laurentian Great Lakes.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Marie G. P. Cavitte, Hugues Goosse, Kenichi Matsuoka, Sarah Wauthy, Vikram Goel, Rahul Dey, Bhanu Pratap, Brice Van Liefferinge, Thamban Meloth, and Jean-Louis Tison
The Cryosphere, 17, 4779–4795, https://doi.org/10.5194/tc-17-4779-2023, https://doi.org/10.5194/tc-17-4779-2023, 2023
Short summary
Short summary
The net accumulation of snow over Antarctica is key for assessing current and future sea-level rise. Ice cores record a noisy snowfall signal to verify model simulations. We find that ice core net snowfall is biased to lower values for ice rises and the Dome Fuji site (Antarctica), while the relative uncertainty in measuring snowfall increases rapidly with distance away from the ice core sites at the ice rises but not at Dome Fuji. Spatial variation in snowfall must therefore be considered.
Brandon L. Graham, Jason P. Briner, Nicolás E. Young, Allie Balter-Kennedy, Michele Koppes, Joerg M. Schaefer, Kristin Poinar, and Elizabeth K. Thomas
The Cryosphere, 17, 4535–4547, https://doi.org/10.5194/tc-17-4535-2023, https://doi.org/10.5194/tc-17-4535-2023, 2023
Short summary
Short summary
Glacial erosion is a fundamental process operating on Earth's surface. Two processes of glacial erosion, abrasion and plucking, are poorly understood. We reconstructed rates of abrasion and quarrying in Greenland. We derive a total glacial erosion rate of 0.26 ± 0.16 mm per year. We also learned that erosion via these two processes is about equal. Because the site is similar to many other areas covered by continental ice sheets, these results may be applied to many places on Earth.
Adrian M. Bender, Richard O. Lease, Lee B. Corbett, Paul R. Bierman, Marc W. Caffee, James V. Jones, and Doug Kreiner
Earth Surf. Dynam., 10, 1041–1053, https://doi.org/10.5194/esurf-10-1041-2022, https://doi.org/10.5194/esurf-10-1041-2022, 2022
Short summary
Short summary
To understand landscape evolution in the mineral resource-rich Yukon River basin (Alaska and Canada), we mapped and cosmogenic isotope-dated river terraces along the Charley River. Results imply widespread Yukon River incision that drove increased Bering Sea sedimentation and carbon sequestration during global climate changes 2.6 and 1 million years ago. Such erosion may have fed back to late Cenozoic climate change by reducing atmospheric carbon as observed in many records worldwide.
Marie Bergelin, Jaakko Putkonen, Greg Balco, Daniel Morgan, Lee B. Corbett, and Paul R. Bierman
The Cryosphere, 16, 2793–2817, https://doi.org/10.5194/tc-16-2793-2022, https://doi.org/10.5194/tc-16-2793-2022, 2022
Short summary
Short summary
Glacier ice contains information on past climate and can help us understand how the world changes through time. We have found and sampled a buried ice mass in Antarctica that is much older than most ice on Earth and difficult to date. Therefore, we developed a new dating application which showed the ice to be 3 million years old. Our new dating solution will potentially help to date other ancient ice masses since such old glacial ice could yield data on past environmental conditions on Earth.
Mae Kate Campbell, Paul R. Bierman, Amanda H. Schmidt, Rita Sibello Hernández, Alejandro García-Moya, Lee B. Corbett, Alan J. Hidy, Héctor Cartas Águila, Aniel Guillén Arruebarrena, Greg Balco, David Dethier, and Marc Caffee
Geochronology, 4, 435–453, https://doi.org/10.5194/gchron-4-435-2022, https://doi.org/10.5194/gchron-4-435-2022, 2022
Short summary
Short summary
We used cosmogenic radionuclides in detrital river sediment to measure erosion rates of watersheds in central Cuba; erosion rates are lower than rock dissolution rates in lowland watersheds. Data from two different cosmogenic nuclides suggest that some basins may have a mixed layer deeper than is typically modeled and could have experienced significant burial after or during exposure. We conclude that significant mass loss may occur at depth through chemical weathering processes.
Agathe Defourny, Pierre-Henri Blard, Laurent Zimmermann, Patrick Jobé, Arnaud Collignon, Frédéric Nguyen, and Alain Dassargues
Hydrol. Earth Syst. Sci., 26, 2637–2648, https://doi.org/10.5194/hess-26-2637-2022, https://doi.org/10.5194/hess-26-2637-2022, 2022
Short summary
Short summary
The Belgian city of Spa is known worldwide for its ferruginous and naturally sparkling groundwater springs that gave their name to the bathing tradition commonly called
spa. However, the origin of the dissolved CO2 they contain was still a matter of debate. Thanks to new analysis on groundwater samples, particularly carbon and helium isotopes together with dissolved gases, this study has demonstrated that the volcanic origin of the CO2 is presumably from the neighboring Eifel volcanic fields.
Leah A. VanLandingham, Eric W. Portenga, Edward C. Lefroy, Amanda H. Schmidt, Paul R. Bierman, and Alan J. Hidy
Geochronology, 4, 153–176, https://doi.org/10.5194/gchron-4-153-2022, https://doi.org/10.5194/gchron-4-153-2022, 2022
Short summary
Short summary
This study presents erosion rates of the George River and seven of its tributaries in northeast Tasmania, Australia. These erosion rates are the first measures of landscape change over millennial timescales for Tasmania. We demonstrate that erosion is closely linked to a topographic rainfall gradient across George River. Our findings may be useful for efforts to restore ecological health to Georges Bay by determining a pre-disturbance level of erosion and sediment delivery to this estuary.
Andrew J. Christ, Paul R. Bierman, Jennifer L. Lamp, Joerg M. Schaefer, and Gisela Winckler
Geochronology, 3, 505–523, https://doi.org/10.5194/gchron-3-505-2021, https://doi.org/10.5194/gchron-3-505-2021, 2021
Short summary
Short summary
Cosmogenic nuclide surface exposure dating is commonly used to constrain the timing of past glacier extents. However, Antarctic exposure age datasets are often scattered and difficult to interpret. We compile new and existing exposure ages of a glacial deposit with independently known age constraints and identify surface processes that increase or reduce the likelihood of exposure age scatter. Then we present new data for a previously unmapped and undated older deposit from the same region.
Melisa A. Diaz, Lee B. Corbett, Paul R. Bierman, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Earth Surf. Dynam., 9, 1363–1380, https://doi.org/10.5194/esurf-9-1363-2021, https://doi.org/10.5194/esurf-9-1363-2021, 2021
Short summary
Short summary
We collected soil surface samples and depth profiles every 5 cm (up to 30 cm) from 11 ice-free areas along the Shackleton Glacier, a major outlet glacier of the East Antarctic Ice Sheet (EAIS), and measured meteoric beryllium-10 and nitrate concentrations to understand the relationship between salts and beryllium-10. This relationship can help inform wetting history, landscape disturbance, and exposure duration.
Greg Balco, Benjamin D. DeJong, John C. Ridge, Paul R. Bierman, and Dylan H. Rood
Geochronology, 3, 1–33, https://doi.org/10.5194/gchron-3-1-2021, https://doi.org/10.5194/gchron-3-1-2021, 2021
Short summary
Short summary
The North American Varve Chronology (NAVC) is a sequence of 5659 annual sedimentary layers that were deposited in proglacial lakes adjacent to the retreating Laurentide Ice Sheet ca. 12 500–18 200 years ago. We attempt to synchronize this record with Greenland ice core and other climate records that cover the same time period by detecting variations in global fallout of atmospherically produced beryllium-10 in NAVC sediments.
Thore Kausch, Stef Lhermitte, Jan T. M. Lenaerts, Nander Wever, Mana Inoue, Frank Pattyn, Sainan Sun, Sarah Wauthy, Jean-Louis Tison, and Willem Jan van de Berg
The Cryosphere, 14, 3367–3380, https://doi.org/10.5194/tc-14-3367-2020, https://doi.org/10.5194/tc-14-3367-2020, 2020
Short summary
Short summary
Ice rises are elevated parts of the otherwise flat ice shelf. Here we study the impact of an Antarctic ice rise on the surrounding snow accumulation by combining field data and modeling. Our results show a clear difference in average yearly snow accumulation between the windward side, the leeward side and the peak of the ice rise due to differences in snowfall and wind erosion. This is relevant for the interpretation of ice core records, which are often drilled on the peak of an ice rise.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Cited articles
Abele, G.: SR-62 Construction of a Snow Runway at Camp Century for Wheel Landings with Lightweight Aircraft, https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/11581/1/SR-62.pdf (last access: 17 August 2024), 1964.
Anonymous: “Ancient Air' held in polar ice cores, Tallahassee Democr., 1959.
Bader, H.: Special Report 58: Scope, Problems, and Potential Value of deep ice Core Drilling in Ice Sheets, Hanover, 1962.
Berner, W., Stauffer, B., and Oeschger, H: Past Atmospheric Composition and Climate, Gas Parameters Measured on Ice Cores, Nature, 276, 53–55, https://doi.org/10.1038/276053a0, 1978.
Blard, P.-H., Protin, M., Tison, J.-L., Fripiat, F., Dahl-Jensen, D., Steffensen, J. P., Mahaney, W. C., Bierman, P. R., Christ, A. J., Corbett, L. B., Debaille, V., Rigaudier, T., Claeys, P., and Team, A.: Basal debris of the NEEM ice core, Greenland: a window into sub-ice sheet geology, basal ice processes and ice sheet oscillations, J. Glaciol., 69, 1011–1029, https://doi.org/10.1017/jog.2022.122, 2023.
Christ, A. J., Bierman, P. R., Schaefer, J. M., Dahl-Jensen, D., Steffensen, J. P., Corbett, L. B., Peteet, D., Thomas, E. K., Steig, E. J., Rittenour, T. M., Tison, J.-L., Blard, P. H., Perdrial, N., Dethier, D., Lini, A., Hidy, A. J., Caffee, M. W., and Southon, J. R.: A multi-million-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century, P. Natl. Acad. Sci. USA, 118, e2021442118, https://doi.org/10.1073/pnas.2021442118, 2021.
Christ, A. J., Rittenour, T. M., Bierman, P. R., Keisling, B. A., Knutz, P. C., Thomsen, T. B., Keulen, N., Fosdick, J. C., Hemming, S. R., Tison, J., Blard, P., Steffensen, J. P., Caffee, M. W., and Corbett, L. B.: Deglaciation of northwestern Greenland during Marine Isotope Stage 11, Science, 381, 330–335, https://doi.org/10.1126/science.ade4248, 2023.
Clark, E.: Technical Report 174: Camp Century Evolution of Concept and History of Design Construction and perfromance, https://apps.dtic.mil/sti/pdfs/AD0477706.pdf (last access: 17 August 2024), 1966.
Corliss, W. R.: Power Reactors in Small Packages, United States, https://www.osti.gov/includes/opennet/includes/Understanding the Atom/Power Reactors in Small Packages V.2.pdf (last access: 17 August 2024), 1968.
Dansgaard, W.: The Abundance of O18 in Atmospheric Water and Water Vapour, Tellus, 5, 461–469, https://doi.org/10.1111/j.2153-3490.1953.tb01076.x, 1953.
Dansgaard, W.: The O18-abundance in fresh water, Geochim. Cosmochim. Ac., 6, 241–260, https://doi.org/10.1016/0016-7037(54)90003-4, 1954.
Dansgaard, W., Johnsen, S. J., Møller, J., and Langway, C. C.: One Thousand Centuries of Climatic Record from Camp Century on the Greenland Ice Sheet, Science, 166, 377–381, https://doi.org/10.1126/science.166.3903.377, 1969.
Daugherty, C. M.: City Under the Ice, The Macmillan Company, New York, 158 pp., 1963.
Doel, R. E., Harper, K. C., and Heymann, M.: Exploring Greenland: Cold War Science and Technology on Ice, edited by: Ronald E. Doel, K. C. Harper, and M. Heymann, Palgrave Macmillan, New York, ISBN 978-1137596871, 2017.
Epstein, S. and Sharp, R.: Oxygen Isotope Studies, National Acad. Sci. IGY Bull. #21, Transactions, Am. Geophys. Union, 40, 81–84, 1959.
Fountain, J., Usselman, T. M., Wooden, J., and Langway, C. C.: Evidence of the Bedrock Beneath the Greenland Ice Sheet Near Camp Century, Greenland, J. Glaciol., 27, 193–197, https://doi.org/10.1017/S0022143000011370, 1981.
Goossens, T., Sapart, C. J., Dahl-Jensen, D., Popp, T., El Amri, S., and Tison, J.-L.: A comprehensive interpretation of the NEEM basal ice build-up using a multi-parametric approach, The Cryosphere, 10, 553–567, https://doi.org/10.5194/tc-10-553-2016, 2016.
Gow, A. J. and Meese, D. A.: Nature of basal debris in the GISP2 and Byrd ice cores and its relevance to bed processes, Ann. Glaciol., 22, 134–140, https://doi.org/10.3189/1996aog22-1-134-140, 1996.
Hansen, B. L.: Deep Core Drilling in Ice, Mem. Natl. Inst. Polar Res. Spec. Issue, 49, 5–8, https://scholar.google.com/scholar?cluster=82144692841318147&hl=en&as_sdt=0,46(last access: 17 August 2024), 1994.
Hansen, B. L. and Langway, C.: Deep core drilling in ice and core analysis at Camp Century, Greenland, 1961–66, Antarct. J. United States, Sept–Oct, 207–208, 1966.
Harwood, D. M.: Do Diatoms beneath the Greenland Ice Sheet Indicate Interglacials Warmer than Present?, Arctic, 39, 304–308, 1986.
Herron, S. and Langway, C. C.: The debris-laden ice at the bottom of the Greenland Ice Sheet, J. Glaciol., 23, 193–207, 1979.
Herron, S. L. and Langway, C. C.: A Comparison of Ice Fabrics and Textures at Camp Century, Greenland and Byrd Station, Antarctica, Ann. Glaciol., 3, 118–124, https://doi.org/10.3189/s0260305500002639, 1982.
Hodson, T. O., Powell, R. D., Brachfeld, S. A., Tulaczyk, S., and Scherer, R. P.: Physical processes in Subglacial Lake Whillans, West Antarctica: Inferences from sediment cores, Earth Planet. Sc. Lett., 444, 56–63, https://doi.org/10.1016/J.EPSL.2016.03.036, 2016.
Langway, C. C.: The history of early polar ice cores, Cold Reg. Sci. Technol., 52, 101–117, https://doi.org/10.1016/j.coldregions.2008.01.001, 2008.
Langway, C. C.: A 400 Meter Deep Ice Core in Greenland: Preliminary Report, J. Glaciol., 3, 217–217, https://doi.org/10.3189/s0022143000024278, 1958.
Langway, C. C. and Hansen, B. L.: Drilling Through the Ice Cap: Probing Climate for a Thousand Centuries, Bull. At. Sci., 26, 62–66, https://doi.org/10.1080/00963402.1970.11457874, 1970.
Licht, K. J. and Hemming, S. R.: Analysis of Antarctic glaciogenic sediment provenance through geochemical and petrologic applications, Quaternary Sci. Rev., 164, 1–24, https://doi.org/10.1016/J.QUASCIREV.2017.03.009, 2017.
MacGregor, J., Fahnestock, M. A., Catania, G., Aschwanden, A., Clow, G. D., Colgan, W. T., Gogineni, S. P., Morlighem, M., Nowicki, S., Paden, J., Price, S. F., and Seroussi, H.: A synthesis of the basal thermal state of the Greenland Ice Sheet, J. Geophys. Res.-Earth, 121, 1328–1350, https://doi.org/10.1002/2015JF003803, 2016.
McKay, R. M., Santis, L. De, Kulhanek, D. K., Ash, J. L., Beny, F., Browne, I. M., Cortese, G., Sousa, I. M. C. de, Dodd, J. P., Esper, O. M., Gales, J. A., Harwood, D. M., Ishino, S., Keisling, B. A., Kim, S., Kim, S., Laberg, J. S., Leckie, R. M., Müller, J., Patterson, M. O., Romans, B. W., Romero, O. E., Sangiorgi, F., Seki, O., Shevenell, A. E., Singh, S. M., Sugisaki, S. T., Flierdt, T. van de, Peer, T. E. van, Xiao, W. and Xiong, Z.: Expedition 374 methods, Proc. Int. Ocean Discov. Progr., 374, 1–54, https://doi.org/10.14379/iodp.proc.374.102.2019, 2019.
MorphoSource: NBI:ICF Camp Century Sub Ice, MorphoSource [code and data set], https://www.morphosource.org/concern/cultural_heritage_objects/000583438 (last access: 1 September 2024), 2023.
Priscu, J. C. and SALSA Science Team: Scientific Access into Mercer Subglacial Lake: Scientific Objectives, Drilling Operations and Initial Observations, Ann. Glaciol., 62, 340–352, https://doi.org/10.1017/aog.2021.10, 2021.
Ragone, S. E. and Finelli, R.: Special Report 167: Procedures for Removing Surface Contaminants From Deep Ice Cores, https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/11771/1/SR-167.pdf (last access: 17 August 2024), 1972.
Schaefer, J. M., Finkel, R. C., Balco, G., Alley, R. B., Caffee, M. W., Briner, J. P., Young, N. E., Gow, A. J., and Schwartz, R.: Greenland was nearly ice-free for extended periods during the Pleistocene, Nature, 540, 252–255, https://doi.org/10.1038/nature20146, 2016.
Shoemaker, B.: Herb Ueda Interview, Polar Oral Hist. Proj., 51 http://hdl.handle.net/1811/44677 (last access: 15 July 2024), 2002.
Souchez, R., Vandenschrick, G., Lorrain, R., and Tison, J.-L.: Basal ice formation and deformation in central Greenland: a review of existing and new ice core data, in Deformation of Glacial Materials, edited by: Maltman, A. J., Hubbard, B., and Hambrey, M. J., Geological Society, Special Publications, London, 13–22, https://doi.org/10.1201/b14059-6, 2000.
Souchez, R., Jouzel, J., Landais, A., Chappellaz, J., Lorrain, R., and Tison, J. L.: Gas isotopes in ice reveal a vegetated central Greenland during ice sheet invasion, Geophys. Res. Lett., 33, 20–23, https://doi.org/10.1029/2006GL028424, 2006.
Souney, J. M., Twickler, M. S., Hargreaves, G. M., Bencivengo, B. M., Kippenhan, M. J., Johnson, J. A., Cravens, E. D., Neff, P. D., Nunn, R. M., Orsi, A. J., Popp, T. J., Rhoades, J. F., Vaughn, B. H., Voigt, D. E., Wong, G. J., and Taylor, K. C.: Core handling and processing for the WAIS Divide ice-core project, Ann. Glaciol., 55, 15–26, https://doi.org/10.3189/2014AoG68A008, 2014.
Talalay, P. G.: Subglacial till and bedrock drilling, Cold Reg. Sci. Technol., 86, 142–166, https://doi.org/10.1016/j.coldregions.2012.08.009, 2013.
Thomis, W.: Arctic Is Warming Up But Word Hasn't Reached Yanks at Outposts, Chicago Dly. Trib., 5, https://campcentury.omeka.net/admin/files/show/817 (last access: 17 August 2024), 1955.
Tison, J.-L., Souchez, R., Wolff, E. W., Moore, J. C., Legrand, M. R., and de Angelis, M.: Is a periglacial biota responsible for enhanced dielectric response in basal ice from the Greenland Ice Core Project ice core?, J. Geophys. Res., 103, 18885–18894, 1998.
Tison, J. L.: Diamond wire-saw cutting technique for investigating textures and fabrics of debris-laden ice and brittle ice, J. Glaciol., 40, 410–414, https://doi.org/10.1017/S0022143000007498, 1994.
Tison, J. L., Thorsteinsson, T., Lorrain, R. D., and Kipfstuhl, J.: Origin and development of textures and fabrics in basal ice at Summit, Central Greenland, Earth Planet. Sc. Lett., 125, 421–437, https://doi.org/10.1016/0012-821X(94)90230-5, 1994.
Ueda, H. T. and Garfield, D. E.: Special Report 126: Drilling through the Greenland Ice Sheet, https://icedrill.org/sites/default/files/SR-126.pdf (last access: 17 August 2024), 1968.
Venturelli, R. A., Siegfried, M. R., Roush, K. A., Li, W., Burnett, J., Zook, R., Fricker, H. A., Priscu, J. C., Leventer, A., and Rosenheim, B. E.: Mid-Holocene Grounding Line Retreat and Readvance at Whillans Ice Stream, West Antarctica, Geophys. Res. Lett., 47, e2020GL088476, https://doi.org/10.1029/2020GL088476, 2020.
Verbeke, V., Lorrain, R., Johnsen, S. J., and Tison, J. L.: A multiple-step deformation history of basal ice from the dye 3 (Greenland) core: New insights from the CO2 and CH4 content, Ann. Glaciol., 35, 231–236, https://doi.org/10.3189/172756402781817248, 2002.
Weis, D., Demaiffe, D., Souchez, R., Gow, A. J., and Meese, D. A.: Ice sheet development in Central Greenland: Implications from the Nd, Sr and Pb isotopic compositions of basal material, Earth Planet. Sci. Lett., 150, 161–169, https://doi.org/10.1016/s0012-821x(97)00073-3, 1997.
Whalley, W. B. and Langway, C. C.: A scanning electron microscope examination of subglacial quartz grains from Camp Century core, Greenland – a preliminary study, J. Glaciol., 25, 125–131, 1980.
Willerslev, E., Cappellini, E., Boomsma, W., Nielsen, R., Hebsgaard, M. B., Brand, T. B., Hofreiter, M., Bunce, M., Poinar, H. N., Dahl-Jensen, D., Johnsen, S., Steffensen, J. P., Bennike, O., Schwenninger, J. L., Nathan, R., Armitage, S., De Hoog, C. J., Alfimov, V., Christl, M., Beer, J., Muscheler, R., Barker, J., Sharp, M., Penkman, K. E. H., Haile, J., Taberlet, P., Gilbert, M. T. P., Casoli, A., Campani, E., and Collins, M. J.: Ancient biomolecules from deep ice cores reveal a forested southern Greenland, Science, 317, 111–114, https://doi.org/10.1126/science.1141758, 2007.
Wilson, G. S., Levy, R. H., Naish, T. R., Powell, R. D., Florindo, F., Ohneiser, C., Sagnotti, L., Winter, D. M., Cody, R., Henrys, S., Ross, J., Krissek, L., Niessen, F., Pompillio, M., Scherer, R., Alloway, B. V., Barrett, P. J., Brachfeld, S., Browne, G., Carter, L., Cowan, E., Crampton, J., DeConto, R. M., Dunbar, G., Dunbar, N., Dunbar, R., von Eynatten, H., Gebhardt, C., Giorgetti, G., Graham, I., Hannah, M., Hansaraj, D., Harwood, D. M., Hinnov, L., Jarrard, R. D., Joseph, L., Kominz, M., Kuhn, G., Kyle, P., Läufer, A., McIntosh, W. C., McKay, R., Maffioli, P., Magens, D., Millan, C., Monien, D., Morin, R., Paulsen, T., Persico, D., Pollard, D., Raine, J. I., Riesselman, C., Sandroni, S., Schmitt, D., Sjunneskog, C., Strong, C. P., Talarico, F., Taviani, M., Villa, G., Vogel, S., Wilch, T., Williams, T., Wilson, T. J., and Wise, S.: Neogene tectonic and climatic evolution of the Western Ross Sea, Antarctica – Chronology of events from the AND-1B drill hole, Glob. Planet. Change, 96–97, 189–203, https://doi.org/10.1016/j.gloplacha.2012.05.019, 2012.
Short summary
In 1966, the U.S. Army drilled through the Greenland Ice Sheet at Camp Century, Greenland; they recovered 3.44 m of frozen material. Here, we decipher the material’s history. Water, flowing during a warm interglacial when the ice sheet melted from northwest Greenland, deposited the upper material which contains fossil plant and insect parts. The lower material, separated by more than a meter of ice with some sediment, is till, deposited by the ice sheet during a prior cold period.
In 1966, the U.S. Army drilled through the Greenland Ice Sheet at Camp Century, Greenland; they...