Articles | Volume 18, issue 4
https://doi.org/10.5194/tc-18-1517-2024
https://doi.org/10.5194/tc-18-1517-2024
Research article
 | 
05 Apr 2024
Research article |  | 05 Apr 2024

The influence of glacial landscape evolution on Scandinavian ice-sheet dynamics and dimensions

Gustav Jungdal-Olesen, Jane Lund Andersen, Andreas Born, and Vivi Kathrine Pedersen

Related authors

Exploring the conditions conducive to convection within the Greenland Ice Sheet
Robert Law, Andreas Born, Philipp Voigt, Joseph A. MacGregor, and Claire Marie Guimond
EGUsphere, https://doi.org/https://doi.org/10.48550/arXiv.2411.18779,https://doi.org/https://doi.org/10.48550/arXiv.2411.18779, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Increasing precipitation due to climate change could partially offset the impact of warming air temperatures on glacier loss in the monsoon-influenced Himalaya until 2100 CE
Anya Schlich-Davies, Ann Rowan, Andrew Ross, Duncan Quincey, and Vivi Pedersen
EGUsphere, https://doi.org/10.31223/X5SH7C,https://doi.org/10.31223/X5SH7C, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Historically consistent mass loss projections of the Greenland ice sheet
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
The Cryosphere, 19, 1205–1220, https://doi.org/10.5194/tc-19-1205-2025,https://doi.org/10.5194/tc-19-1205-2025, 2025
Short summary
Sensitivity of winter Arctic amplification in NorESM2
Lise Seland Graff, Jerry Tjiputra, Ada Gjermundsen, Andreas Born, Jens Boldingh Debernard, Heiko Goelzer, Yan-Chun He, Petra Margaretha Langebroek, Aleksi Nummelin, Dirk Olivié, Øyvind Seland, Trude Storelvmo, Mats Bentsen, Chuncheng Guo, Andrea Rosendahl, Dandan Tao, Thomas Toniazzo, Camille Li, Stephen Outten, and Michael Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2025-472,https://doi.org/10.5194/egusphere-2025-472, 2025
Short summary
Limited global effect of climate-Greenland ice sheet coupling in NorESM2 under a high-emission scenario
Konstanze Haubner, Heiko Goelzer, and Andreas Born
EGUsphere, https://doi.org/10.5194/egusphere-2024-3785,https://doi.org/10.5194/egusphere-2024-3785, 2025
Short summary

Related subject area

Discipline: Ice sheets | Subject: Paleo-Glaciology (including Former Ice Reconstructions)
Ice sheet model simulations reveal that polythermal ice conditions existed across the northeastern USA during the Last Glacial Maximum
Joshua K. Cuzzone, Aaron Barth, Kelsey Barker, and Mathieu Morlighem
The Cryosphere, 19, 1559–1575, https://doi.org/10.5194/tc-19-1559-2025,https://doi.org/10.5194/tc-19-1559-2025, 2025
Short summary
Millennial-scale fluctuations of palaeo-ice margin at the southern fringe of the last Fennoscandian Ice Sheet
Karol Tylmann, Wojciech Wysota, Vincent Rinterknecht, Piotr Moska, Aleksandra Bielicka-Giełdoń, and ASTER Team
The Cryosphere, 18, 1889–1909, https://doi.org/10.5194/tc-18-1889-2024,https://doi.org/10.5194/tc-18-1889-2024, 2024
Short summary
Antarctic permafrost processes and antiphase dynamics of cold-based glaciers in the McMurdo Dry Valleys inferred from 10Be and 26Al cosmogenic nuclides
Jacob T. H. Anderson, Toshiyuki Fujioka, David Fink, Alan J. Hidy, Gary S. Wilson, Klaus Wilcken, Andrey Abramov, and Nikita Demidov
The Cryosphere, 17, 4917–4936, https://doi.org/10.5194/tc-17-4917-2023,https://doi.org/10.5194/tc-17-4917-2023, 2023
Short summary
Simulating the Laurentide Ice Sheet of the Last Glacial Maximum
Daniel Moreno-Parada, Jorge Alvarez-Solas, Javier Blasco, Marisa Montoya, and Alexander Robinson
The Cryosphere, 17, 2139–2156, https://doi.org/10.5194/tc-17-2139-2023,https://doi.org/10.5194/tc-17-2139-2023, 2023
Short summary
Reversible ice sheet thinning in the Amundsen Sea Embayment during the Late Holocene
Greg Balco, Nathan Brown, Keir Nichols, Ryan A. Venturelli, Jonathan Adams, Scott Braddock, Seth Campbell, Brent Goehring, Joanne S. Johnson, Dylan H. Rood, Klaus Wilcken, Brenda Hall, and John Woodward
The Cryosphere, 17, 1787–1801, https://doi.org/10.5194/tc-17-1787-2023,https://doi.org/10.5194/tc-17-1787-2023, 2023
Short summary

Cited articles

Anderson, R. S., Dühnforth, M., Colgan, W., and Anderson, L.: Far-flung moraines: Exploring the feedback of glacial erosion on the evolution of glacier length, Geomorphology, 179, 269–285, https://doi.org/10.1016/j.geomorph.2012.08.018, 2012. 
Bart, P. J., Mullally, D., and Golledge, N. R.: The influence of continental shelf bathymetry on Antarctic ice sheet response to climate forcing, Global Planet. Change, 142, 87–95, https://doi.org/10.1016/j.gloplacha.2016.04.009, 2016. 
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S., Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The configuration of northern hemisphere ice sheets through the Quaternary, Nat. Commun., 10, 3713, https://doi.org/10.1038/s41467-019-11601-2, 2019. 
Binzer, K., Stockmarr, J., and Lykke-Andersen, H.: Pre-quaternary Surface Topography of Denmark, Geological survey of Denmark, map series no. 44, 1994. 
Bondzio, J. H., Morlighem, M., Seroussi, H., Kleiner, T., Rückamp, M., Mouginot, J., Moon, T., Larour, E. Y., and Humbert, A.: The mechanisms behind jakobshavn isbræ's acceleration and mass loss: A 3-d thermomechanical model study, Geophys. Res. Lett., 44, 6252–6260, https://doi.org/10.1002/2017GL073309, 2017. 
Download
Short summary
We explore how the shape of the land and underwater features in Scandinavia affected the former Scandinavian ice sheet over time. Using a computer model, we simulate how the ice sheet evolved during different stages of landscape development. We discovered that early glaciations were limited in size by underwater landforms, but as these changed, the ice sheet expanded more rapidly. Our findings highlight the importance of considering landscape changes when studying ice-sheet history.
Share