Articles | Volume 18, issue 4
https://doi.org/10.5194/tc-18-1517-2024
https://doi.org/10.5194/tc-18-1517-2024
Research article
 | 
05 Apr 2024
Research article |  | 05 Apr 2024

The influence of glacial landscape evolution on Scandinavian ice-sheet dynamics and dimensions

Gustav Jungdal-Olesen, Jane Lund Andersen, Andreas Born, and Vivi Kathrine Pedersen

Related authors

Investigating the multi-millennial evolution and stability of the Greenland ice sheet using remapped surface mass balance forcing
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
EGUsphere, https://doi.org/10.5194/egusphere-2025-2192,https://doi.org/10.5194/egusphere-2025-2192, 2025
Short summary
Ice motion across incised fjord landscapes
Sjur Barndon, Robert Law, Andreas Born, Thomas Chudley, and Stefanie Brechtelsbauer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1304,https://doi.org/10.5194/egusphere-2025-1304, 2025
Short summary
Exploring the conditions conducive to convection within the Greenland Ice Sheet
Robert Law, Andreas Born, Philipp Voigt, Joseph A. MacGregor, and Claire Marie Guimond
EGUsphere, https://doi.org/10.48550/arXiv.2411.18779,https://doi.org/10.48550/arXiv.2411.18779, 2025
Short summary
Increasing precipitation due to climate change could partially offset the impact of warming air temperatures on glacier loss in the monsoon-influenced Himalaya until 2100 CE
Anya Schlich-Davies, Ann Rowan, Andrew Ross, Duncan Quincey, and Vivi Pedersen
EGUsphere, https://doi.org/10.31223/X5SH7C,https://doi.org/10.31223/X5SH7C, 2025
Short summary
Historically consistent mass loss projections of the Greenland ice sheet
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
The Cryosphere, 19, 1205–1220, https://doi.org/10.5194/tc-19-1205-2025,https://doi.org/10.5194/tc-19-1205-2025, 2025
Short summary

Cited articles

Anderson, R. S., Dühnforth, M., Colgan, W., and Anderson, L.: Far-flung moraines: Exploring the feedback of glacial erosion on the evolution of glacier length, Geomorphology, 179, 269–285, https://doi.org/10.1016/j.geomorph.2012.08.018, 2012. 
Bart, P. J., Mullally, D., and Golledge, N. R.: The influence of continental shelf bathymetry on Antarctic ice sheet response to climate forcing, Global Planet. Change, 142, 87–95, https://doi.org/10.1016/j.gloplacha.2016.04.009, 2016. 
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S., Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The configuration of northern hemisphere ice sheets through the Quaternary, Nat. Commun., 10, 3713, https://doi.org/10.1038/s41467-019-11601-2, 2019. 
Binzer, K., Stockmarr, J., and Lykke-Andersen, H.: Pre-quaternary Surface Topography of Denmark, Geological survey of Denmark, map series no. 44, 1994. 
Bondzio, J. H., Morlighem, M., Seroussi, H., Kleiner, T., Rückamp, M., Mouginot, J., Moon, T., Larour, E. Y., and Humbert, A.: The mechanisms behind jakobshavn isbræ's acceleration and mass loss: A 3-d thermomechanical model study, Geophys. Res. Lett., 44, 6252–6260, https://doi.org/10.1002/2017GL073309, 2017. 
Download
Short summary
We explore how the shape of the land and underwater features in Scandinavia affected the former Scandinavian ice sheet over time. Using a computer model, we simulate how the ice sheet evolved during different stages of landscape development. We discovered that early glaciations were limited in size by underwater landforms, but as these changed, the ice sheet expanded more rapidly. Our findings highlight the importance of considering landscape changes when studying ice-sheet history.
Share