Articles | Volume 18, issue 3
https://doi.org/10.5194/tc-18-1359-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-1359-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Snow mechanical property variability at the slope scale – implication for snow mechanical modelling
Laboratoire de géomorphologie et de gestion des risques en montagne (LGGRM), Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Canada
Centre for Northern Studies, Université Laval, Québec, Canada
Francis Gauthier
Laboratoire de géomorphologie et de gestion des risques en montagne (LGGRM), Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Canada
Centre for Northern Studies, Université Laval, Québec, Canada
Alexandre Langlois
Groupe de Recherche Interdisciplinaire sur les Milieux Polaires (GRIMP), Département de géomatique appliquée, Université de Sherbrooke, Sherbrooke, Canada
Centre for Northern Studies, Université Laval, Québec, Canada
Related authors
Francis Gauthier, Jacob Laliberté, and Francis Meloche
EGUsphere, https://doi.org/10.5194/egusphere-2025-1572, https://doi.org/10.5194/egusphere-2025-1572, 2025
Short summary
Short summary
This study uses 4 different machine learning (ML) methods to forecast snow avalanches in northern Gaspésie using MTMQ avalanche records, and meteorological data. Comparing unsupervised and expert-driven models, results show similar prediction accuracy. Logistic Regression and Random Forest models perform well in real-time forecasting over 24–48 h. Findings suggest ML can enhance avalanche hazard anticipation and support operational decision-making.
Francis Gauthier, Jacob Laliberté, and Francis Meloche
EGUsphere, https://doi.org/10.5194/egusphere-2025-1572, https://doi.org/10.5194/egusphere-2025-1572, 2025
Short summary
Short summary
This study uses 4 different machine learning (ML) methods to forecast snow avalanches in northern Gaspésie using MTMQ avalanche records, and meteorological data. Comparing unsupervised and expert-driven models, results show similar prediction accuracy. Logistic Regression and Random Forest models perform well in real-time forecasting over 24–48 h. Findings suggest ML can enhance avalanche hazard anticipation and support operational decision-making.
Charlotte Crevier, Alexandre Langlois, Chris Derksen, and Alexandre Roy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3580, https://doi.org/10.5194/egusphere-2024-3580, 2025
Short summary
Short summary
A multisensor C-Band SAR near-daily time series in an Arctic environment was developed to create a high-resolution freeze/thaw algorithm with an accuracy of 96 %. The FT detection was highly correlated to near-surface state as measured by soil temperature. Small but significant FT date differences were identified for different Arctic ecotypes, showing the spatial variability of freeze/thaw process in Arctic environment.
Paul Billecocq, Alexandre Langlois, and Benoit Montpetit
The Cryosphere, 18, 2765–2782, https://doi.org/10.5194/tc-18-2765-2024, https://doi.org/10.5194/tc-18-2765-2024, 2024
Short summary
Short summary
Snow covers a vast part of the globe, making snow water equivalent (SWE) crucial for climate science and hydrology. SWE can be inversed from satellite data, but the snow's complex structure highly affects the signal, and thus an educated first guess is mandatory. In this study, a subgridding framework was developed to model snow at the local scale from model weather data. The framework enhanced snow parameter modeling, paving the way for SWE inversion algorithms from satellite data.
Julien Meloche, Melody Sandells, Henning Löwe, Nick Rutter, Richard Essery, Ghislain Picard, Randall K. Scharien, Alexandre Langlois, Matthias Jaggi, Josh King, Peter Toose, Jérôme Bouffard, Alessandro Di Bella, and Michele Scagliola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1583, https://doi.org/10.5194/egusphere-2024-1583, 2024
Preprint archived
Short summary
Short summary
Sea ice thickness is essential for climate studies. Radar altimetry has provided sea ice thickness measurement, but uncertainty arises from interaction of the signal with the snow cover. Therefore, modelling the signal interaction with the snow is necessary to improve retrieval. A radar model was used to simulate the radar signal from the snow-covered sea ice. This work paved the way to improved physical algorithm to retrieve snow depth and sea ice thickness for radar altimeter missions.
Tom Birien and Francis Gauthier
Nat. Hazards Earth Syst. Sci., 23, 343–360, https://doi.org/10.5194/nhess-23-343-2023, https://doi.org/10.5194/nhess-23-343-2023, 2023
Short summary
Short summary
On highly fractured rockwalls such as those found in northern Gaspésie, most rockfalls are triggered by weather conditions. This study highlights that in winter, rockfall frequency is 12 times higher during a superficial thaw than during a cold period in which temperature remains below 0 °C. In summer, rockfall frequency is 22 times higher during a heavy rainfall event than during a mainly dry period. This knowledge could be used to implement a risk management strategy.
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022, https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Julien Meloche, Alexandre Langlois, Nick Rutter, Alain Royer, Josh King, Branden Walker, Philip Marsh, and Evan J. Wilcox
The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022, https://doi.org/10.5194/tc-16-87-2022, 2022
Short summary
Short summary
To estimate snow water equivalent from space, model predictions of the satellite measurement (brightness temperature in our case) have to be used. These models allow us to estimate snow properties from the brightness temperature by inverting the model. To improve SWE estimate, we proposed incorporating the variability of snow in these model as it has not been taken into account yet. A new parameter (coefficient of variation) is proposed because it improved simulation of brightness temperature.
Alain Royer, Alexandre Roy, Sylvain Jutras, and Alexandre Langlois
The Cryosphere, 15, 5079–5098, https://doi.org/10.5194/tc-15-5079-2021, https://doi.org/10.5194/tc-15-5079-2021, 2021
Short summary
Short summary
Dense spatially distributed networks of autonomous instruments for continuously measuring the amount of snow on the ground are needed for operational water resource and flood management and the monitoring of northern climate change. Four new-generation non-invasive sensors are compared. A review of their advantages, drawbacks and accuracy is discussed. This performance analysis is intended to help researchers and decision-makers choose the one system that is best suited to their needs.
Nataniel M. Holtzman, Leander D. L. Anderegg, Simon Kraatz, Alex Mavrovic, Oliver Sonnentag, Christoforos Pappas, Michael H. Cosh, Alexandre Langlois, Tarendra Lakhankar, Derek Tesser, Nicholas Steiner, Andreas Colliander, Alexandre Roy, and Alexandra G. Konings
Biogeosciences, 18, 739–753, https://doi.org/10.5194/bg-18-739-2021, https://doi.org/10.5194/bg-18-739-2021, 2021
Short summary
Short summary
Microwave radiation coming from Earth's land surface is affected by both soil moisture and the water in plants that cover the soil. We measured such radiation with a sensor elevated above a forest canopy while repeatedly measuring the amount of water stored in trees at the same location. Changes in the microwave signal over time were closely related to tree water storage changes. Satellites with similar sensors could thus be used to monitor how trees in an entire region respond to drought.
Cited articles
Bellaire, S. and Schweizer, J.: Measuring spatial variations of weak layer and slab properties with regard to snow slope stability, Cold Reg. Sci. Technol., 65, 234–241, https://doi.org/10.1016/J.COLDREGIONS.2010.08.013, 2011. a, b, c, d
Birkeland, K. W.: Spatial patterns of snow stability throughout a small mountain range, J. Glaciol., 47, 176–186, https://doi.org/10.3189/172756501781832250, 2001. a, b
Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modelling: A review, Hydrol. Process., 9, 251–290, https://doi.org/10.1002/hyp.3360090305, 1995. a
Calonne, N., Richter, B., Löwe, H., Cetti, C., ter Schure, J., Van Herwijnen, A., Fierz, C., Jaggi, M., and Schneebeli, M.: The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack , The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020, 2020. a
Campbell, C. and Jamieson, B.: Spatial variability of slab stability and fracture characteristics within avalanche start zones, Cold Reg. Sci. Technol., 47, 134–147, https://doi.org/10.1016/j.coldregions.2006.08.015, 2007. a
Chilès, J.-P. and Delfiner, P.: Geostatistics: Modelling Spatial Uncertainty, John Wiley & Sons, Ltd, New-York, https://doi.org/10.1002/9781118136188, 1999. a
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015. a
Dale, M. R. T. and Fortin, M.-J.: Spatial Analysis: A guide for Ecologists, Cambridge University Press, 2nd edn., https://doi.org/10.1017/CBO9780511978913, 2014. a, b
Feick, S., Kronholm, K., and Schweizer, J.: Field observations on spatial variability of surface hoar at the basin scale, J. Geophys. Res.-Earth Surf., 112, 1–16, https://doi.org/10.1029/2006JF000587, 2007. a
Fyffe, B. and Zaiser, M.: The effects of snow variability on slab avalanche release, Cold Reg. Sci. Technol., 40, 229–242, https://doi.org/10.1016/j.coldregions.2004.08.004, 2004. a, b
Gao, J. and Xia, Z. G.: Fractals in physical geography, Prog. Phys. Geogr., 20, 178–191, https://doi.org/10.1177/030913339602000204, 1996. a, b
Gaume, J., Chambon, G., Eckert, N., and Naaim, M.: Influence of weak-layer heterogeneity on snow slab avalanche release: Application to the evaluation of avalanche release depths, J. Glaciol., 59, 423–437, https://doi.org/10.3189/2013JoG12J161, 2013. a, b
Gaume, J., Schweizer, J., Herwijnen, A., Chambon, G., Reuter, B., Eckert, N., and Naaim, M.: Evaluation of slope stability with respect to snowpack spatial variability, J. Geophys. Res.-Earth Surf., 119, 1783–1799, https://doi.org/10.1002/2014jf003193, 2014. a, b, c, d
Gaume, J., Chambon, G., Eckert, N., Naaim, M., and Schweizer, J.: Influence of weak layer heterogeneity and slab properties on slab tensile failure propensity and avalanche release area, The Cryosphere, 9, 795–804, https://doi.org/10.5194/tc-9-795-2015, 2015. a, b
Gaume, J., van Herwijnen, A., Chambon, G., Wever, N., and Schweizer, J.: Snow fracture in relation to slab avalanche release: critical state for the onset of crack propagation, The Cryosphere, 11, 217–228, https://doi.org/10.5194/tc-11-217-2017, 2017. a
Gauthier, D. and Jamieson, B.: Evaluation of a prototype field test for fracture and failure propagation propensity in weak snowpack layers, Cold Reg. Sci. Technol., 51, 87–97, https://doi.org/10.1016/J.COLDREGIONS.2007.04.005, 2008. a
Grünewald, T., Schirmer, M., Mott, R., and Lehning, M.: Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment, The Cryosphere, 4, 215–225, https://doi.org/10.5194/tc-4-215-2010, 2010. a, b
Guy, Z. M. and Birkeland, K. W.: Relating complex terrain to potential avalanche trigger locations, Cold Reg. Sci. Technol., 86, 1–13, https://doi.org/10.1016/j.coldregions.2012.10.008, 2013. a
Habermann, M., Schweizer, J., and Jamieson, J. B.: Influence of snowpack layering on human-triggered snow slab avalanche release, Cold Reg. Sci. Technol., 54, 176–182, https://doi.org/10.1016/j.coldregions.2008.05.003, 2008. a
Hägeli, P. and McClung, D. M.: Avalanche characteristics of a transitional snow climate-Columbia Mountains, British Columbia, Canada, Cold Reg. Sci. Technol., 37, 255–276, https://doi.org/10.1016/S0165-232X(03)00069-7, 2003. a, b
Hägeli, P. and McClung, D. M.: Hierarchy theory as a conceptual framework for scale issues in avalanche forecast modeling, Ann. Glaciol., 38, 209–214, https://doi.org/10.3189/172756404781815266, 2004. a
Harper, J. T. and Bradford, J. H.: Snow stratigraphy over a uniform depositional surface: Spatial variability and measurement tools, Cold Reg. Sci. Technol., 37, 289–298, https://doi.org/10.1016/S0165-232X(03)00071-5, 2003. a
Hesterberg, T., Choi, N. H., Meier, L., and Fraley, C.: Least angle and l1 penalized regression: A review, Statistical Surveys, 2, 61–93, https://doi.org/10.1214/08-SS035, 2008. a
Johnson, J. B. and Schneebeli, M.: Characterizing the microstructural and micromechanical properties of snow, Cold Reg. Sci. Technol., 30, 91–100, https://doi.org/10.1016/S0165-232X(99)00013-0, 1999. a, b, c
Kronholm, K. and Birkeland, K. W.: Integrating spatial patterns into a snow avalanche cellular automata model, Geophys. Res. Lett., 32, L19504, https://doi.org/10.1029/2005GL024373, 2005. a
Kronholm, K. and Birkeland, K. W.: Reliability of sampling designs for spatial snow surveys, Comput. Geosci., 33, 1097–1110, https://doi.org/10.1016/j.cageo.2006.10.004, 2007. a
Kronholm, K. and Schweizer, J.: Snow stability variation on small slopes, Cold Reg. Sci. Technol., 37, 453–465, https://doi.org/10.1016/S0165-232X(03)00084-3, 2003. a, b, c
Landry, C., Birkeland, K., Hansen, K., Borkowski, J., Brown, R., and Aspinall, R.: Variations in snow strength and stability on uniform slopes, Cold Reg. Sci. Technol., 39, 205–218, https://doi.org/10.1016/j.coldregions.2003.12.003, 2004. a
Löwe, H. and van Herwijnen, A.: A Poisson shot noise model for micro-penetration of snow, Cold Reg. Sci. Technol., 70, 62–70, https://doi.org/10.1016/j.coldregions.2011.09.001, 2012. a, b, c
Lutz, E. and Birkeland, K. W.: Spatial patterns of surface hoar properties and incoming radiation on an inclined forest opening, J. Glaciol., 57, 355–366, https://doi.org/10.3189/002214311796405843, 2011. a, b
Lutz, E., Birkeland, K. W., Kronholm, K., Hansen, K., and Aspinall, R.: Surface hoar characteristics derived from a snow micropenetrometer using moving window statistical operations, Cold Reg. Sci. Technol., 47, 118–133, https://doi.org/10.1016/j.coldregions.2006.08.021, 2007. a, b
Marra, G. and Wood, S. N.: Practical variable selection for generalized additive models, Computational Statistics and Data Analysis, 55, 2372–2387, https://doi.org/10.1016/j.csda.2011.02.004, 2011. a
Meloche, F., Gauthier, F., Langlois, A., and Boucher, D.: The Northeastern Rainy Continental snow climate: A snow climate classification for the Gaspé Peninsula, Québec, Canada, in: International Snow Science Workshop, Innsbruck, Austria, 1025–1029, 2018. a
Meloche, J., Langlois, A., Rutter, N., McLennan, D., Royer, A., Billecocq, P., and Ponomarenko, S.: High-resolution snow depth prediction using Random Forest algorithm with topographic parameters: A case study in the Greiner watershed, Nunavut, Hydrol. Process., 36, e14546, https://doi.org/10.1002/HYP.14546, 2022. a, b, c, d
Monti, F., Gaume, J., van Herwijnen, A., and Schweizer, J.: Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack, Nat. Hazards Earth Syst. Sci., 16, 775–788, https://doi.org/10.5194/nhess-16-775-2016, 2016. a, b, c, d
Mott, R., Schirmer, M., and Lehning, M.: Scaling properties of wind and snow depth distribution in an Alpine catchment, J. Geophys. Res.-Atmos., 116, 1–8, https://doi.org/10.1029/2010JD014886, 2011. a, b
Mullen, R. S. and Birkeland, K. W.: Mixed Effect and Spatial Correlation Models for Analyzing a Regional Spatial dataset, International snow science workshop, 21–27 September 2008, Whistler, Canada, 8, https://arc.lib.montana.edu/snow-science/item/65 (last access: 10 July 2023), 2008. a
Nussbaum, M., Walthert, L., Fraefel, M., Greiner, L., and Papritz, A.: Mapping of soil properties at high resolution in Switzerland using boosted geoadditive models, SOIL, 3, 191–210, https://doi.org/10.5194/soil-3-191-2017, 2017. a, b, c
Pebesma, E. J.: Multivariable geostatistics in S: the gstat package, Comput. Geosci., 30, 683–691, https://doi.org/10.1016/j.cageo.2004.03.012, 2004. a
Pielmeier, C. and Marshall, H. P.: Rutschblock-scale snowpack stability derived from multiple quality-controlled SnowMicroPen measurements, Cold Reg. Sci. Technol., 59, 178–184, https://doi.org/10.1016/j.coldregions.2009.06.005, 2009. a
Proksch, M., Löwe, H., and Schneebeli, M.: Density, specific surface area, and correlation length of snow measured by high-resolution penetrometry, J. Geophys. Res.-Earth Surf., 120, 346–362, https://doi.org/10.1002/2014JF003266, 2015. a, b
Pulwicki, A., Flowers, G. E., Radic, V., and Bingham, D.: Estimating winter balance and its uncertainty from direct measurements of snow depth and density on alpine glaciers, J. Glaciol., 64, 781–795, https://doi.org/10.1017/JOG.2018.68, 2018. a, b
Reuter, B. and Schweizer, J.: Describing Snow Instability by Failure Initiation, Crack Propagation, and Slab Tensile Support, Geophys. Res. Lett., 45, 7019–7027, https://doi.org/10.1029/2018GL078069, 2018. a
Reuter, B., Herwijnen, A. V., and Schweizer, J.: Simple drivers of snow instability, Cold Reg. Sci. Technol., 120, 168–178, https://doi.org/10.1016/j.coldregions.2015.06.016, 2015a. a, b
Reuter, B., Schweizer, J., and van Herwijnen, A.: A process-based approach to estimate point snow instability, The Cryosphere, 9, 837–847, https://doi.org/10.5194/tc-9-837-2015, 2015b. a
Reuter, B., Proksch, M., Löwe, H., Van Herwijnen, A., and Schweizer, J.: Comparing measurements of snow mechanical properties relevant for slab avalanche release, J. Glaciol., 65, 55–67, https://doi.org/10.1017/jog.2018.93, 2019. a, b
Revuelto, J., Billecocq, P., Tuzet, F., Cluzet, B., Lamare, M., Larue, F., and Dumont, M.: Random forests as a tool to understand the snow depth distribution and its evolution in mountain areas, Hydrol. Process., 34, 5384–5401, https://doi.org/10.1002/hyp.13951, 2020. a, b, c, d
Richter, B., Schweizer, J., Rotach, M. W., and van Herwijnen, A.: Validating modeled critical crack length for crack propagation in the snow cover model SNOWPACK, The Cryosphere, 13, 3353–3366, https://doi.org/10.5194/tc-13-3353-2019, 2019. a, b, c
Rosendahl, P. L. and Weißgraeber, P.: Modeling snow slab avalanches caused by weak-layer failure – Part 2: Coupled mixed-mode criterion for skier-triggered anticracks, The Cryosphere, 14, 131–145, https://doi.org/10.5194/tc-14-131-2020, 2020. a
Sappington, J. M., Longshore, K. M., and Thompson, D. B.: Quantifying Landscape Ruggedness for Animal Habitat Analysis: A Case Study Using Bighorn Sheep in the Mojave Desert, J. Wildlife Manage., 71, 1419–1426, https://doi.org/10.2193/2005-723, 2007. a
Schirmer, M. and Lehning, M.: Persistence in intra-annual snow depth distribution: 2.Fractal analysis of snow depth development, Water Resour. Res., 47, 1–14, https://doi.org/10.1029/2010WR009429, 2011. a
Schirmer, M., Wirz, V., Clifton, A., and Lehning, M.: Persistence in intra-annual snow depth distribution: 1.Measurements and topographic control, Water Resour. Res., 47, 1–16, https://doi.org/10.1029/2010WR009426, 2011. a
Schweizer, J. and Kronholm, K.: Snow cover spatial variability at multiple scales: Characteristics of a layer of buried surface hoar, Cold Reg. Sci. Technol., 47, 207–223, https://doi.org/10.1016/j.coldregions.2006.09.002, 2007. a
Schweizer, J. and Reuter, B.: A new index combining weak layer and slab properties for snow instability prediction, Nat. Hazards Earth Syst. Sci., 15, 109–118, https://doi.org/10.5194/nhess-15-109-2015, 2015. a, b
Schweizer, J., Kronholm, K., Jamieson, J. B., and Birkeland, K. W.: Review of spatial variability of snowpack properties and its importance for avalanche formation, Cold Reg. Sci. Technol., 51, 253–272, https://doi.org/10.1016/j.coldregions.2007.04.009, 2008a. a, b, c, d
Schweizer, J., McCammon, I., and Jamieson, J. B.: Snowpack observations and fracture concepts for skier-triggering of dry-snow slab avalanches, Cold Reg. Sci. Technol., 51, 112–121, https://doi.org/10.1016/J.COLDREGIONS.2007.04.019, 2008b. a
Skøien, J. O. and Blöschl, G.: Sampling scale effects in random fields and implications for environmental monitoring, Environ. Monitor. A., 114, 521–552, https://doi.org/10.1007/s10661-006-4939-z, 2006. a, b, c
Stethem, C., Jamieson, B., Schaerer, P., Liverman, D., Germain, D., and Walker, S.: Snow avalanche hazard in Canada – A review, Nat. Hazards, 28, 487–515, https://doi.org/10.1023/A:1022998512227, 2003. a
Techel, F., Jarry, F., Kronthaler, G., Mitterer, S., Nairz, P., Pavšek, M., Valt, M., and Darms, G.: Avalanche fatalities in the European Alps: long-term trends and statistics, Geogr. Helv., 71, 147–159, https://doi.org/10.5194/gh-71-147-2016, 2016. a, b
Trujillo, E., Ramírez, J. A., and Elder, K. J.: Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields, Water Resour. Res., 43, W07409, https://doi.org/10.1029/2006WR005317, 2007. a, b
Veitinger, J., Sovilla, B., and Purves, R. S.: Influence of snow depth distribution on surface roughness in alpine terrain: a multi-scale approach, The Cryosphere, 8, 547–569, https://doi.org/10.5194/tc-8-547-2014, 2014. a, b
Weiss, A.: Topographic position and landforms analysis, Poster presentation, ESRI User Conference, San Diego, CA, 64, 227–245, 2001. a
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M.: “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications, Geomorphology, 179, 300–314, https://doi.org/10.1016/J.GEOMORPH.2012.08.021, 2012. a
Wirz, V., Schirmer, M., Gruber, S., and Lehning, M.: Spatio-temporal measurements and analysis of snow depth in a rock face, The Cryosphere, 5, 893–905, https://doi.org/10.5194/tc-5-893-2011, 2011. a
Wood, S. N.: Generalized additive models: an introduction with R, 2nd edn., Chapman and Hall/CRC, https://doi.org/10.1201/9781315370279, 2017. a
Short summary
Snow avalanches are a dangerous natural hazard. Backcountry recreationists and avalanche practitioners try to predict avalanche hazard based on the stability of snow cover. However, snow cover is variable in space, and snow stability observations can vary within several meters. We measure the snow stability several times on a small slope to create high-resolution maps of snow cover stability. These results help us to understand the snow variation for scientists and practitioners.
Snow avalanches are a dangerous natural hazard. Backcountry recreationists and avalanche...